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1 The Calculus of Variations
The Euler-Lagrange formulation was built upon the foundation of the the calculus of variations, the initial
development of which is usually credited to Leonhard Euler.1 The calculus of variations is an extensive
subject, and there are many fine references which present a detailed development of the subject – see

1http://en.wikipedia.org/wiki/Calculus_of_variations
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Bibliography. The purpose of this addendum is do provide a brief background in the theory behind La-
grange’s Equations. Fortunately, complete understanding of this theory is not absolutely necessary to
use Lagrange’s equations, but a basic understanding of variational principles can greatly increase your
mechanical modeling skills.

1.1 Extremum of an Integral – The Euler-Lagrange Equation
Given the Integral of a functional (a function of functions) of the form

I(ϵ) =

∫ t2

t1

F (U, U̇ , t)dt, (1)

where t1, and t2 are arbitrary, ϵ is a small real and independent variable, and U and U̇ are given by

U(t) = u(t) + ϵη(t), and U̇(t) = u̇(t) + ϵη̇(t). (2)

The functions U , and u may be thought of as describing the possible positions of a dynamical system
between the two instants in time, t1, and t2, where u(t) represents the position when the integral de-
scribed by Equation (1) is stationary, i.e. where it is an extremum, and U(t) is u(t) plus a variation ϵη(t).
The function U(t) does not by definition render (1) stationary because we shall assume η(t) is indepen-
dent of u(t), and we will assume that a unique function renders (1) an extremum. The reasons for these
assumptions will become clear below. The important point so far is that have not made any restrictive
statements about I(ϵ) other than it is an integral of a functional of the functions U(t) and U̇(t). We will
now specify that the functions u(t), and η(t) are of class C2. That is, they possess continuous second
derivatives with respect to t. Further, let us stipulate that η(t) must vanish at t = t1, and t = t2. In
other words, u(t) and U(t) coincide at the end points of the interval [ t1, t2], where t1, and t2 are arbitrary.

Now that we have the stage more or less set up, lets see what rules the functional F (U, U̇ , t) must
obey to render (1) extreme. We have, by definition, that the function u(t) renders I stationary, hence,
we know this occurs when U(t) = u(t), or ϵ = 0. this situation is depicted in Figure 1.

u(x,t)+  n(x,t)

u(x,t)

n(x,t)

Figure 1. Relationship between extremizing function u(t), and variation ϵη(t).

Thus, assuming that t1, and t2 are not functions of ϵ, we set the first derivative of I(ϵ) equal to zero.

dI(ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ t2

t1

dF

dϵ
(U, U̇ , t)dt = 0. (3)

However,
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dF

dϵ
(U, U̇ , t) =

∂F

∂U

∂U

∂ϵ
+

∂F

∂U̇

∂U̇

∂ϵ
, (4)

so substituting Equation (4) into Equation (3), and setting ϵ = 0, we have

dI(ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ t2

t1

(
∂F

∂u
η +

∂F

∂u̇
η̇

)
dt = 0. (5)

Integration of Equation (5) by parts yields:

dI(ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ t2

t1

η(t)

(
∂F

∂u
− d

dt

∂F

∂u̇

)
dt+

∂F

∂u̇
η(t)

∣∣∣∣t2
t1

= 0. (6)

The last term in Equation (6) vanishes because of the stipulation η(t1) = η(t2) = 0, which leaves

dI(ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ t2

t1

η(t)

(
∂F

∂u
− d

dt

∂F

∂u̇

)
dt = 0. (7)

By the fundamental theorem of the calculus of variations [1], since η(t) is arbitrary except at the end
points t1, and t2, we must have, in general

dI(ϵ)

dϵ

∣∣∣∣
ϵ=0

=
∂F

∂u
− d

dt

∂F

∂u̇
= 0. (8)

Equation (8) is known as the Euler-Lagrange equation. It specifies the conditions on the functional F to
extremize the integral I(ϵ) given by Equation (1). By extremize, we mean that I(ϵ) may be (1) maxi-
mum, (2) minimum, or (3) an inflection point – i.e. neither maximum, nor minimum. In fact, there is no
guarantee of the existence of a global extremum; the integral may be only locally extreme for small values
of ϵ. The determination of the nature of the stationary condition of I(ϵ) for the general case is beyond
the scope of this document. Let it suffice to say that for every case considered in the study of mechanics
or dynamics, I(ϵ) will be globally minimum when ϵ = 0.

Equation (5) is often written

δI =
dI(ϵ)

dϵ

∣∣∣∣
ϵ=0

= ϵ

∫ t2

t1

(
∂F

∂u
η +

∂F

∂u̇
η̇

)
dt =

∫ t2

t1

(
∂F

∂u
δu+

∂F

∂u̇
δu̇

)
dt = 0, (9)

where δu = η is the variation of u, and [2],

d

dt
δu =

d

dt
(ϵη) = ϵη̇ = δ

du

dt
= δu̇. (10)

Using Equation (10), and integrating Equation (9) by parts, we obtain

δI =

∫ t2

t1

(
∂F

∂u
− d

dt

∂F

∂u̇

)
δudt, (11)

with the stipulation, as before, that δu(t1) = δu(t2) = 0.
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2 Hamilton’s Principle
Hamilton’s principal is, perhaps, the most important result in the calculus of variations. We derived
the Euler-Lagrange equation for a single variable, u, but we will now shift our attention to a system N
particles of mass mi each. Hence, we may obtain N equations of the form

mir̈i = Fi, (12)

where the bold font indicates a vector quantity, and Fi denotes the total force on the ith particle.
D’Alembert’s principle may be stated by rewriting Equation (12) as

mir̈i − Fi = 0 (13)

Taking the dot product of each of the Equations (13) with the variation in position δr, and summing the
result over all N particles, yields

N∑
i=1

(mir̈i − Fi) · δri = 0. (14)

We note that the sum of the virtual work done by the applied forces over the virtual displacements is
given by

δW =

N∑
i=1

Fi · δri. (15)

Next, we note that

N∑
i=1

mir̈i · δri =
N∑
i=1

mi

[
d

dt
(ṙi · δri)− δ

(
1

2
ṙi · ṙi

)]
=

N∑
i=1

mi
d

dt
(ṙi · δri)− δT, (16)

where δT is the variation of the kinetic energy. Hence, Equation (16) may be written,

δT + δW =
N∑
i=1

mi
d

dt
(ṙi · δri) . (17)

In a manner similar to that shown in Figure 1, and in view of Equation (10) the possible dynamical
paths of each particle may be represented as shown in Figure 2, where the varied dynamical path may be
thought to occur atemporally.

r

r r

r

Figure 2. Possible dynamical paths for a particle between two arbitrary instants in time.
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Since we again have that δr(t1) = δr(t2) = 0, we may multiply Equation (17) by dt, and and integrate
between the two arbitrary times t1, and t2 to obtain

∫ t2

t1

(δT + δW ) dt =

N∑
i=1

mi (ṙi · δri)

∣∣∣∣∣
t2

t1

= 0. (18)

If δW can be expressed as the variation of the potential energy, −δV 2, Equation (18) may be written∫ t2

t1

(δT − δV ) dt = 0. (19)

Introducing the Lagrange function, L = T − V , Equation (19) becomes

δ

∫ t2

t1

Ldt = 0. (20)

Equation (20) is the mathematical statement of Hamilton’s principal. Hamilton’s principal may be defined
in words as follows.

Definition 2.1 The actual path a body takes in configuration space renders the value of the definite
integral I =

∫ t2
t1

Ldt stationary with respect to all arbitrary variations of the path between two instants t1,
and t2 provided that the path variations vanish at t1, and t2 [2]. The integral defined in Equation (20)
is usually referred to as the action integral.3

In all physical systems, the stationary value of I will be a minimum.

2.1 Generalized Coordinates and Forces
Implicit in the definition of Hamilton’s principle is that the system will move along a dynamical path
consistent with the system constraints – i.e. along a permissible path. Generalized coordinates render the
dynamical path explicitly permissible by describing it using the minimum number of independent coor-
dinates. Thus, the ith system position may be described as a function of the N generalized coordinates,
and (in general) time, t, as follows:

ri = ri(q1, q2, q3, · · · , qn, t). (21)

Hence, the variation of the ith position, which occurs atemporally, may be expressed as

δri =

N∑
j=1

∂ri
∂qj

δqj . (22)

Generalized forces forces are those forces which do work (or virtual work) through displacement of the
generalized coordinates. Thus, the virtual work done by an applied force is given by

δWi = Fi · δri = Fi ·
N∑
j=1

∂ri
∂qj

δqj =
N∑
j=1

Fi ·
∂ri
∂qj

δqj =
N∑
j=1

Qqjδqj , (23)

where
Qqj = Fi ·

∂ri
∂qj

. (24)

2The negative sign on δV is chosen to reflect that conservative forces may always be written as the negative gradient of
the potential energy: Fci = −∇V . Where, for example, in Cartesian coordinates: ∇ = ∂

∂x
i+ ∂

∂y
j+ ∂

∂z
k.

3See: https://en.wikipedia.org/wiki/Action_(physics).
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In general, the number of number of position vectors locating the center of mass of the bodies in a system
is always equal to the number of bodies, and the number of degrees of freedom is always equal to the
number of required generalized coordinates. Hence, letting M denote the number of bodies in a system,
and N the number of degrees of freedom, the total virtual work done on a system of M bodies over N
degrees of freedom is given by

δW =

M∑
i=1

Fi · δri =
M∑
i=1

Fi ·
N∑
j=1

∂ri
∂qj

δqj =

M∑
i=1

N∑
j=1

Fi ·
∂ri
∂qj

δqj =

N∑
j=1

Qi
qjδqj (25)

where

Qi
qj =

M∑
i=1

Fi ·
∂ri
∂qj

. (26)

Similarly, the virtual work done by the the ith resultant torque on a rotating body described by NR

generalized rotational coordinates is given by

δWi = τi ·
NR∑
j=1

∂θi
∂ϕj

δϕj (27)

where we identify the rotational coordinate θi as a function of NR generalized rotational coordinates:

θi = θi(ϕ1, ϕ2, · · · , ϕNR
). (28)

Hence the total virtual work done by torques may be expressed as

δWθ =

MI∑
i=1

τi ·
NR∑
k=1

∂θi
∂ϕk

δϕk =

MI∑
i=1

NR∑
k=1

τi ·
∂θi
∂ϕk

δϕk =

NR∑
k=1

Qi
ϕk
δϕk, (29)

where MI denotes the number of inertias acted upon by resultant torques in a system. Thus, to account for
rotational degrees of freedom, Equation (25) must be modified adding the work done by applied torques:

δW =
N∑
j=1

Qi
qjδqj +

NR∑
k=1

Qi
ϕk
δϕk (30)

where

Qi
ϕk

=

MI∑
i=1

τi ·
∂θi
∂ϕk

. (31)

Consider the following example.

Example 2.1 Given the system shown in Figure 3, determine the virtual work δW done by the force
F = 4i+ 3j, where i, and j are the unit vectors in the x and y directions, over a virtual displacement δr
consistent with the constraints: x = r cos θ, and y = r sin θ. Use the generalized coordinates, q1 = r, and
q2 = θ.

Solution:

This system consists of a single mass, so M = 1, and two degrees of freedom, so N = 2. We have a
choice to use either the x, y-coordinate system, in which the force F is described, or the r, θ-coordinate
system, which trivially describes the motion of the particle in terms of the unit vectors, er, and eθ. Let

6
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m
r

Figure 3. Particle of mass m moving under influence of force F.

us choose the former choice to better illustrate the use of generalized coordinates. Writing the location
of the mass in terms of x, and y, we have

r = r cos θi+ r sin θj. (32)

Applying Equation (22), to Equation (32), we obtain

δr =

N∑
j=1

∂r

∂qj
δqj = (cos θi+ sin θj) δr + (−r sin θi+ r cos θj) δθ. (33)

The virtual work is given by δW = F · δr, hence, we obtain

δW = (4i+ 3j) · [(cos θi+ sin θj) δr + (−r sin θi+ r cos θj) δθ] , (34)

or,
δW = 4 (cos θδr − r sin θδθ) + 3 (sin θδr + r cos θδθ) . (35)

or
δW = (4 cos θ + 3 sin θ)δr + (3 cos θ − 4 sin θ)rδθ (36)

Careful examination of Equation (36) reveals that the coefficients of the δr, and rδθ terms represent the
the components of the applied force F in the er, and eθ directions respectively. Hence the generalized
forces in this case are defined as

Qr = 4 cos θ + 3 sin θ (37)
and

Qθ = 3 cos θ − 4 sin θ (38)

x
1

K
1

M
2

M
1

x
2 (rel. to x

1
)

F

C
1

C
2

C
3

K
2

K
3

Figure 4. Forced two mass system with a relative coordinate.

Example 2.2 Consider the system shown in Figure (4) which consists of two viscoelastically connected
masses described using one absolute and one relative coordinate.
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1. Determine the displacement of the masses using the generalized coordinates, q1 = x1 and q2 = x2,
and the resulting virtual displacements.

2. Identify the applied forces.

3. Determine the generalized forces, Qx1 and Qx2.
Solution:

(a) The displacement of the first mass, M1, is given by r1 = x1i. Since the displacement of the second
mass is described relative to the first, we have r2 = r1 + rr2/r1 = (x1 + x2)i. Hence, the virtual displace-
ments are δr1 = δx1i, and δr2 = (δx1 + δx2)i

(b) The only applied force is given as F i, which acts on M2.

(c) From Equation (23) we have

δW = F i · δr2 = F i ·
2∑

j=1

∂r2
∂qj

δqj = F i · (δx1i+ δx2i) = Fδx1 + Fδx2 (39)

Hence, the generalized forces are: Qx1 = F and Qx2 = F . Here it is important to note that the applied
force does virtual work on both generalized coordinates.

r

F

e
θ

e
r

φ

τ

Figure 5. Disk of mass m moving under influence of force F , and torque τ .

Example 2.3 Consider the system shown in Figure 5. In this example, we have a disk of mass, m, and
radius, R, undergoing general motion in the X,Y plane, which is acted upon by a force, F , and torque,
τ . Determine the total work done by the generalized forces.

Solution:

In this example, there is a single body and three degrees of freedom. Thus, we have the same
generalized coordinates as in Example 2.1, plus ϕk, and the same force, plus the applied torque, τk.
Hence, the work done by the applied force is the same as that given by Equation (36), which was obtained
using Equation (22), but now we must add the work done by the torque, which is given by

δWϕ = τ · δϕ = τδϕ (40)

So, the total work is given by

δW = δW = (4 cos θ + 3 sin θ)δr + (3 cos θ − 4 sin θ)rδθ + τδϕ (41)

In this example, there is only one rotational degree of freedom, so NR = 1, and θ = ϕk.

8
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3 Lagrange’s Equations of Motion
Writing the position and velocity of each particle in the system as a function of the generalized coordinates
qi, and their derivatives with respect to time q̇i, we have that L = L(q1, q2, · · · , qn, q̇1, q̇2, · · · , q̇n). Hence,
following the procedure detailed in Section 1, but replacing the functional F with L, and u with qi, we
obtain

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (42)

Equation (42) is the Lagrange equation for systems where the virtual work may be expressed as a variation
of a potential function, V . In the frequent cases where this is not the case, the so-called extended Hamilton’s
principle must be used.

3.1 Lagrange’s Equations Via The Extended Hamilton’s Principle
If the virtual work is not derivable from a potential function, then we must begin with equation (18).
The kinetic energy is given by

T =
1

2

N∑
k=1

mkṙk · ṙk, (43)

and the virtual work may be computed in the manner of Equation (15). Care must be taken to account
for p forces, and N generalized coordinates. Hence, the variation of the jth position is given by

δrj =
N∑
k=1

∂rj
∂qk

δqk (44)

Hence, the virtual work done by p forces acting over N generalized coordinates is given by

δW =

p∑
j=1

Fj · δrj =
p∑

j=1

Fj ·
N∑
k=1

∂rj
∂qk

δqk. (45)

Switching the order of summation, we have

δW =
N∑
k=1

 p∑
j=1

Fj ·
∂rj
∂qk

 δqk =
N∑
k=1

Qkδqk, (46)

where

Qk =

p∑
k=1

Fj ·
∂rj
∂qk

, for k = 1, 2, 3, · · · , N. (47)

Substitution of Equation (46) into Equation (18) yields∫ t2

t1

N∑
k=1

[
∂T

∂qk
− d

dt

(
∂T

∂q̇k

)
+Qk

]
δqkdt = 0. (48)

Since the δqk are arbitrary between t1, and t2, we have

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Qk. (49)
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If some of the forces are derivable from a potential function V , we may divide the virtual work up into
conservative virtual work, which is done by those forces derivable from a potential function, and non-
-conservative virtual work done by those which are not derivable from a potential function V . Thus we
have,

δW = δW c + δWnc = −δV +

N∑
k=1

Qnc
k δqk. (50)

Substitution of Equation (50) into Equation (18) yields∫ t2

t1

δ (T − V ) dt+

∫ t2

t1

N∑
k=1

Qnc
k δqkdt = 0, (51)

or, from the definition of the Lagrangian,∫ t2

t1

(
δL+

N∑
k=1

Qnc
k δqk

)
dt. (52)

Applying Equation (8), we obtain Lagrange’s equation in its most familiar form

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qnc

k . (53)

3.2 Rayleigh’s Dissipation function
An important case where a nonconservative force may be derived from a potential function is that of the
viscous damping force. The potential function for viscous forces is called theRayleigh dissipation function
after Lord Rayleigh. Presented here without derivation, the Rayleigh dissipation function for a single
linear viscous damper is given by

D =
1

2
cẋ2, (54)

where c is the damping constant, and x is the displacement from inertial ground. In a system where
there are multiple degrees of freedom, and several dampers between the mass particles, the velocity
difference between the ends of the dampers must be accounted for. For example, in a two degree of
freedom system, with one set of springs and dampers attached to ground, and another set between the
two masses, we have

D =
1

2

[
c1ẋ

2
1 + c2(ẋ2 − ẋ1)

2
]
, (55)

where c1, and c2 are the damping constants, and ẋ1, and ẋ2 are the velocities of the two masses.

In general, Equation (53) may be modified to include the Rayleigh dissipation function, and will
assume the form:

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
+

∂D

∂q̇k
= Qnc

k . (56)

3.3 Kinematic Requirements of Lagrange’s Equation
Lagrangian dynamics, as described thus far, provides a very powerful means to determine the equations
of motion for complicated discrete (finite degree of freedom) systems. However, there are two primary
kinematic requirements which must be achieved before the determination of the potential functions, and
subsequent application of Lagrange’s equation.

10
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1. Coordinate choice:

(a) The choice of coordinates must be independent and orthogonal. While it is possible to use non-
-orthogonal coordinates, the additional complexity incurred is not worth the effort in discrete
models. Examples of orthogonal coordinate choices include: Cartesian – x, y,z, cylindrical – r,
θ, z, and spherical – r, θ, and ϕ.

(b) The coordinates must locate the body with respect to an inertial reference frame. An inertial
reference frame is simply one which is not accelerating.

2. Translational and rotational energy:

In rigid bodies, both the translational and rotational kinetic energy must be accounted for. Three
cases exist:

(a) Pure rotation – An object which is in pure rotation has at least one point or line which has zero
translational velocity. In this case, all of the kinetic energy is rotational, so only the rotational
kinetic potential function need be accounted for.

(b) Pure translation – An object is said to be in pure translation if it has no rotation. In this case
only the translational kinetic potential function need be accounted for, so only the velocity of
the center of mass is needed.

(c) Translation and rotation – A body which is both translating and rotating exhibits no station-
ary points as does a body in pure rotation. However, a translating and rotating body can
exhibit instantaneous centers of rotation which have zero velocity with respect to an inertial
reference for an instant. An important example of this case is rolling without slipping. The
point of contact between a wheel and the ground has zero velocity, so the kinetic energy may
be considered to be purely rotational as long as the inertia with respect to the instant center
is used.

In the general case of rotation and translation, the velocity of the center of mass is used for
the translational kinetic potential, and the angular velocity about the mass center is used to
determine the rotational kinetic potential. Hence, the inertia about the mass center is used
in this case. This approach may be used for all cases since all motion may be broken up into
rotation about the center of mass, and translation of the center of mass.

As an example, consider a slender rod of mass, m, and length L used as a pendulum. The
kinetic energy may be found in one case, using the instant center of rotation approach, to
be T = Trot = 1

2(
1
3mL2)θ̇2, were the pivot point it the reference for the moment of inertia,

and in the general case, T = Trot + Ttrans, where the mass center is used. In later case,
Trot = 1

2(
1
12mL2)θ̇2, and Ttrans = 1

2mv2CM = 1
2m(L2 θ̇)

2. Hence, adding the rotational and
translational kinetic potentials yields the same result as obtained by using the instant center
of rotation approach.

3.4 Lagrange Equation Examples
Example 3.1 Consider the system shown in Figure 6. The equations of motion may be easily found
using Equation 56. In this case q1 = x1, and q2 = x2. First, we must find the potential functions.

11
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Figure 6. Two degree of freedom example with inertial coordinates.

Solution

Kinetic Energy:
T =

1

2

(
M1ẋ

2
1 +M2ẋ

2
2

)
(57)

Potential Energy:
V =

1

2

[
K1x

2
1 +K2 (x2 − x1)

2
]

(58)

Rayleigh’s Dissipation Function:

D =
1

2

[
C1ẋ

2
1 + C2 (ẋ2 − ẋ1)

2
]

(59)

Generalized Force:
Qx2 = f(t) (60)

Lagrange Function:

L = T − V =
1

2

(
M1ẋ

2
1 +M2ẋ

2
2

)
− 1

2

[
K1x

2
1 +K2 (x2 − x1)

2
]

(61)

Substitution of the Lagrange function, L, the dissipation function, D, and the generalized force, Qx2

into Equation (56) yields the system equations of motion:

M1ẍ1 + (C1 + C2)ẋ1 − C2ẋ2 + (K1 +K2)x1 −K2x2 = 0 (62)
M2ẍ2 − C2ẋ1 + C2ẋ2 −K2x1 +K2x2 = f(t). (63)

Example 3.2 Consider the system described in Example 2.2; determine the equations of motion using
Lagrange’s Equation given by Equation (56).

Solution

Kinematics:

r1 = x1i and r2 = (x1 + x2) i, thus, ṙ1 = ẋ1i, and ṙ2 = (ẋ1 + ẋ2) i.

Kinetic Energy:

T =
1

2
M1ṙ1 · ṙ1 +

1

2
M2ṙ2 · ṙ2 =

1

2

[
M1ẋ

2
1 +M2 (ẋ1 + ẋ2)

2
]

(64)

12
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Potential Energy:

V =
1

2

[
K1x

2
1 +K2x

2
2 +K3 (x1 + x2)

2
]
, (65)

where it should be noted that the displacement of the left end of the third spring is due to the inertial
displacement of M2 because its right end is grounded, whereas the displacement of the second spring is
due only to the relative separation of the two masses as described by x

2 (rel. to x1).

Rayleigh’s Dissipation Function:

The form of the dissipation function follows that of the potential energy:

D =
1

2

[
C1ẋ

2
1 + C2ẋ

2
2 + C3 (ẋ1 + ẋ2)

2
]
. (66)

Generalized Forces:

The generalized forces have already been identified in Example 2.2 as

Qx1 = F and Qx2 = F (67)

Lagrange Function:

L = T − V = L = 1
2

[
M1ẋ

2
1 +M2 (ẋ1 + ẋ2)

2
]
− 1

2

[
K1x

2
1 +K2x

2
2 +K3 (x1 + x2)

2
]

(68)

Application of Lagrange’s equation yields:

(M1 +M2) ẍ1 +M2ẍ2 + (C1 + C3)ẋ1 + C3ẋ2 + (K1 +K3)x1 +K3x2 = F, (69)

and
M1ẍ2 +M2ẍ2 + C3ẋ1 + (C2 + C3) ẋ2 +K3x1 + (K2 +K3)x2 = F. (70)

The use of inertial coordinates in this example would considerably simplify the resulting EOMs.
Substitution of the inertial coordinates y1 = x1 and y2 = y1 + x2 =⇒ x2 = y2 − y2, and some algebra
yields:

M1ÿ1 + (C1 + C2)ẏ1 − C2ẏ2 + (K1 +K2)y1 −K2y2 = 0 (71)

and
M2ÿ2 − C2ẏ1 + (C2 + C3)ẏ2 −K2y1 + (K2 +K3)y2 = F (72)

This form of the EOMs is said to be viscoelastically coupled and inertially uncoupled. Recasting the
resulting EOMs into matrix form, we have:[

M1 0
0 M2

](
ẏ1
ÿ2

)
+

[
C1 + C2 −C2

−C2 C2 + C3

](
ẏ1
ẏ2

)
+

[
K1 +K2 −K2

−K2 K2 +K3

](
y1
y2

)
=

(
0
F

)
(73)

4 Constrained Maxima and Minima
There are two principal advantages in using the analytical approach to determining the equation of motion
for a dynamical system:

1. only positions and velocities need be determined. The resulting accelerations are determined auto-
matically. This often means a considerable savings in computation.

13
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2. All work-less constraint forces are automatically eliminated from the calculations. In the Newtonian
approach, all contact forces applied to the body in question must be accounted for, and ultimately
determined in order to solve the resulting equations of motion. In a kinematic chain, this requirement
leads to significant effort.

The question arises, however: what if we need to know the constraint forces in a system? This is
often the case in engineering design and analysis. Fortunately, Lagrange developed an elegant means to
solve constrained problems of extremum in general which yields only the constraint forces of interest in
dynamical systems.

4.1 Lagrange’s Multipliers
Consider a function u = f(x1, x2, . . . , xn), having at least two continuous derivatives with respect to
the independent variables, to be extremized. Obviously, the function, u, must be at least of quadratic
polynomial order, or it cannot exhibit an extremum! A necessary condition for extremum is that the total
differential of the function u vanishes [3];

du =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + . . . ,+

∂f

∂xn
dxn = 0. (74)

Assuming that the variables, xi, are independent, it follows that the sufficient condition for extremum is

∂f

∂x1
= 0,

∂f

∂x2
= 0,

...
∂f

∂xn
= 0. (75)

Next, consider the case where some of the independent variables are related by constraints. It is easy to
show that Equation (74) is still valid. Consider the function, u = f(x, y, z), where z = z(x, y), is related
to x, and y through a constraint equation of the form

ϕ(x, y, z) = 0. (76)

Considering the variables x, and y, as the independent variables, the necessary conditions for extremum
are

∂u

∂x
=

∂f

∂x
+

∂f

∂z

∂z

∂x
= 0,

∂u

∂y
=

∂f

∂y
+

∂f

∂z

∂z

∂y
= 0. (77)

Hence, the total differential becomes

du =
∂u

∂x
dx+

∂u

∂y
dy =

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z

(
∂z

∂x
dx+

∂z

∂y
dy

)
= 0. (78)

Since

dz =
∂z

∂x
dx+

∂z

∂y
dy, (79)

it follows that

14
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∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = 0. (80)

Hence, Equation (74) is still valid even when there are constraint relations between the independent
variables. Next, consider the total differential of the constraint given by Equation (76),

∂ϕ

∂x
dx+

∂ϕ

∂y
dy +

∂ϕ

∂z
dz = 0. (81)

Multiplying Equation (81) by an undetermined multiplier, λ, and adding it to Equation (80) yields(
∂f

∂x
+ λ

∂ϕ

∂x

)
dx+

(
∂f

∂y
+ λ

∂ϕ

∂y

)
dy +

(
∂f

∂z
+ λ

∂ϕ

∂z

)
dz = 0. (82)

The multiplier, λ, may be chosen so that

∂f

∂x
+ λ

∂ϕ

∂x
= 0

∂f

∂y
+ λ

∂ϕ

∂y
= 0

∂f

∂z
+ λ

∂ϕ

∂z
= 0

ϕ(x, y, z) = 0, (83)

so that the necessary condition for an extremum of u = f(x, y, z) is satisfied.

y = -3x + 9
9

3
0

P

y

x

Figure 7. Analytical geometry example.

As an example of the application of Lagrangian multipliers, consider the problem of finding the
coordinates of the nearest point to the origin, P , on a specified line [3]. The function to be extremized is
the squared distance to the point given by

f(x, y) = r2 = x2 + y2, (84)

subject to the constraint
ϕ(x, y) = y + 3x− 9 = 0. (85)

We note here that f(x, y) is of class C2, whereas x+ y, which is also a measure of the distance from the
origin to the point P , is not. Alternatively, we could also use the Euclidian norm, r =

√
x2 + y2, as the

15
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distance measure to be minimized, but the computations are slightly more complex. Applying Equations
(83), we have

2x+ 3λ = 0 (86)
2y + λ = 0 (87)

y + 3x− 9 = 0. (88)

From Equation (87), we have λ = −2y. Substitution into (86) yields y = 1
3x. Substitution of this result

into (88) yields x = 27
10 , and y = 9

10 . Hence, the point P =(2710 ,
9
10) is the nearest point to the origin on the

line given by y = −3x+ 9. That this is so may be easily verified by taking the dot product of the vector
from the origin to P with that in the same direction as the line to demonstrate that they are indeed
perpendicular:

(
27

10
,
9

10
) · (3,−9) = 0. (89)

A mathematical shorthand may be employed to include the constraints and the function to be extremized
in a single “augmented” function given by

f∗ = f(x1, x2, . . . , xn) + λϕ(x1, x2, . . . , xn), (90)

where ϕ(x1, x2, . . . , xn) is the constraint function. Next, taking the total differential of Equation (90)
while considering the Lagrange multiplier constant, and by setting the coefficients of the differentials to
zero, we arrive at

∂f

∂x1
+ λ

∂ϕ

∂x1
= 0

∂f

∂x2
+ λ

∂ϕ

∂x2
= 0

...
∂f

∂xn
+ λ

∂ϕ

∂xn
= 0

ϕ(x1, x2, . . . , xn) = 0, (91)

In the case where there are n variables related by m constraints, we must define m Lagrange multipliers.
Hence, Equation (90) becomes

f∗ = f(x1, x2, . . . , xn) +

m∑
j=1

λjϕj(x1, x2, . . . , xn), (92)

and we define n+m equations of the form

∂f

∂xi
+

m∑
j=1

λj
∂ϕj

∂xi
= 0, for i = 1, 2, . . . , n, (93)

and
ϕj(x1, x2, . . . , xn) = 0, for j = 1, 2, . . . ,m. (94)

4.2 Application of Lagrange Multipliers to Compute Equilibrium Reaction Forces
Next, we consider the application of Lagrange multipliers to determine the static reaction forces at
equilibrium.
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Theorem 4.1 The total work done by the forces acting on a body in equilibrium during a reversible virtual
displacement consistent with the system constraints is zero.

The above theorem, stated here without proof, seems reasonable since equilibrium implies the absence of
explicit time dependent forces. Consider the case for a conservative system where

δW = −δV (95)

At equilibrium, we have that

δW = −δV = 0. (96)

Consider the potential energy to be a function of n coordinates, x1, x2, . . . , xn, such that

δV =
∂V

∂x1
δx1 +

∂V

∂x2
δx2 + . . .+

∂V

∂xn
δxn = 0. (97)

Next, we consider the same system to be subject to a constraint of the form

ϕ(x1, x2, . . . , xn) = 0. (98)

Taking the total variation of the constraint, we have

δϕ =
∂ϕ

∂x1
δx1 +

∂ϕ

∂x2
δx2 + . . .+

∂ϕ

∂xn
δxn = 0. (99)

Multiplying Equation (99) by an unknown Lagrange multiplier, and subtracting4 it from Equation
(97) we have (

∂V

∂x1
− λ

∂ϕ

∂x1

)
δx1 +

(
∂V

∂x2
− λ

∂ϕ

∂x2

)
δx2 + . . .+

(
∂V

∂xn
− λ

∂ϕ

∂xn

)
δxn = 0. (100)

Equation (100) is analogous to Equation (82), and again, a system of n + 1 equations analogous to
Equation (83) results. As before, mathematical shorthand may be used to augment the potential energy,
so that it assumes the form

V ∗ = V − λϕ. (101)

The variation is then taken as usual, but the Lagrange multiplier, λ, is assumed to be constant. Consider
the following simple example:

Given the simple pendulum shown in Figure 8, determine the reaction force on the pivot, Fp, as well
as the conditions of equilibrium using the Lagrange multiplier method.

Solution: Taking the pivot point as datum, we find that the potential energy is given by

V = −mgr cos θ,

subject to the constraint
ϕ = r − l = 0.

The augmented potential energy is given by
4The variation of the constraint is subtracted, since it represents virtual work done by constraint forces which always

oppose motion. Where Newton’s second law is applied, such forces would carry a negative sign on the side of the equation
of motion opposite that of the inertial reaction – i.e. the ma or Iα term.
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e
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Figure 8. Simple pendulum example.

V ∗ = V − λϕ = −mgr cos θ − λ(r − l)

Taking the variation of V ∗, we have

δV ∗ = −mg cos θ̄δr +mgr sin θ̄δθ − λδr = 0

Since the variations are independent, we must have

−λ−mg cos θ̄ = 0

sin θ̄ = 0,

where θ̄ is the value of θ at equilibrium. Thus, we have: θ̄ = 0 and θ̄ = π, so λ = −mg cos θ̄ = ∓mg
at the equilibrium angles, θ̄ = 0 and θ̄ = π, respectively. In this case, λ is the force of constraint acting
on the pendulum mass in the r-direction because the constraint was in the r-direction, so it is positive
when θ̄ = π because it acts in the +r-direction to overcome the weight of the particle, and negative when
θ̄ = 0, because supporting the weight requires the constraint force to act in the −r-direction.

4.3 Application of Lagrange Multipliers to Compute Dynamic Reaction Forces
The Lagrange multiplier method readily extends to the non-equilibrium dynamic case. for simple geo-
metric constraints such as illustrated in the previous section, Equation (101), still applies, and is used to
form the so-called augmented Lagrangian:

L∗ = T − V ∗. (102)

The equations of motion are then determined as usual.

4.3.1 Gear Train Constraint Force Example

Consider the system shown in Figure 9 which represents a simple gear train connecting two inertias –
assumed to account for the gear inertias as well. The gears have radii, r1 and r2, and posses N1, and N2

teeth, respectively. It is desired to know the constraint force between the gears due to the application of
an applied torque, τ(t), acting on the J1 inertia. For the gears to mesh, the geometric constraint may be
stated as

N2θ2 = N1θ1 (103)

Hence, if we want the resulting equation of motion in terms of θ1, the constraint function could be written

ϕ(θ1, θ2) = θ2 −
N1

N2
θ1. (104)
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Figure 9. Gear train with viscoelastic constraints.

The kinetic and augmented potential energies may then be expressed as:

T =
1

2
J1θ̇

2
1 +

1

2
J2θ̇

2
2, (105)

and
V ∗ =

1

2
K2θ

2
2 − λ

(
θ2 −

N1

N2
θ1

)
. (106)

The Rayleigh’s dissipation function is given by:

D =
1

2
C1θ̇1. (107)

Hence, the augmented Lagrangian becomes

L∗ =
1

2
J1θ̇

2
1 +

1

2
J2θ̇

2
2 −

1

2
K2θ

2
2 + λ

(
θ2 −

N1

N2
θ1

)
. (108)

Application of Lagrange’s equation on the θ1 coordinate yields:

J1θ̈1 + C1θ̇1 −
N1

N2
λ = τ(t) (109)

Likewise, for θ2, we obtain
J2θ̈2 +K2θ2 − λ = 0 (110)

Substitution of the constraint given by Equation (103) into Equation (110) yields

N1

N2

(
J2θ̈1 +K2θ1

)
− λ = 0. (111)

Thus, the constraint torque acting on the gear connected to inertia, J2, required to force the gears to
mesh is given by

λ =
N1

N2

(
J2θ̈1 +K2θ1

)
. (112)

Substitution of Equation (112) into (109) yields(
J1 +

(
N1

N2

)2

J2

)
θ̈1 + C1θ̇1 +

(
N1

N2

)2

K2θ1 = τ(t). (113)

Equation (113) may be solved to obtain θ1(t), and the result substituted into Equation (112) to obtain
the constraint torque, λ. To determine the constraint force between the gears, we note that the torque,
λ, is acting on the J2 inertia, so the constraint force is given by

fc =
λ

r2
=

N1

r2N2

(
J2θ̈1 +K2θ1

)
. (114)
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From Newton’s third law, the force acting on the gear connected to J1 would have the same magnitude,
but opposite sign.

The approach illustrated in this example provides a systematic method to analyze much more compli-
cated gear trains. For example, Mantriota et al. utilize this approach to predict the efficiency of epicyclic
gear trains [4].

5 Hamilton’s Principle: Continuous Models
Hamilton’s principle may be used to obtain the equations of motion for continuous system models in
much the same manner as applied to discrete systems. For example, the elastic potential energy in a tight
string with tension, τ Newtons, and mass per unit length, ρ kg/m, is given by

V =
1

2
τ

∫ L

0

(
∂u

∂x

)2

dx (115)

Likewise, the kinetic energy is given by

T =
1

2
ρ

∫ L

0

(
∂u

∂t

)2

dx (116)

The extended Hamilton’s principle may be written as

δ

∫ t2

t1

[T − V ] dt =

∫ t2

t1

δW dt (117)

where δW denotes the virtual work done by string against non-conservative forces, and δ is the variational
operator or derivative (assumed to occur contemporaneously). For our string example, we thus have

δ

∫ t2

t1

∫ L

0

[
1

2
ρ

(
∂u

∂t

)2

− 1

2
τ

(
∂u

∂x

)2
]
dx dt =

∫ t2

t1

∫ L

0

[
−f(x, t)δu+ γ

∂u

∂t
δu

]
dx dt (118)

where the negative sign on f(x, t) denotes that it is adding energy by forcing the string in the direction
of increasing displacement instead of absorbing energy like the damping component (with coefficient, γ
N-s/ m2) does. This is merely a restatement of the first law of thermodynamics. Taking the variation
under the integral sign, we have∫ t2

t1

∫ L

0

[
ρ
∂u

∂t
δ
∂u

∂t
− τ

∂u

∂x
δ
∂u

∂x

]
dx =

∫ t2

t1

∫ L

0

[
−f(x, t)δu+ γ

∂u

∂t
δu

]
dx dt (119)

Since the order of differentiation does not matter, we can switch the order of the variation and the partial
derivatives to obtain∫ t2

t1

∫ L

0

[
ρ
∂u

∂t

∂δu

∂t
− τ

∂u

∂x

∂δu

∂x

]
dx dt =

∫ t2

t1

∫ L

0

[
−f(x, t)δu+ γ

∂u

∂t
δu

]
dx dt (120)

Integrating the first term by parts with respect to t yields∫ t2

t1

∫ L

0
ρ
∂u

∂t

∂δu

∂t
dx dt =

∫ L

0

[
ρ
∂u

∂t
δu|t2t1 −

∫ t2

t1

ρ
∂2u

∂t2
δu

]
dx dt (121)

The first term on the rhs of Equation (121) vanishes due to the stipulation that variation must vanish
at the arbitrary times, t1, and t2 – i.e. δu(x, t1) = δu(x, t2) = 0 See also: Section 1.1. Hence, Equation
(120) becomes∫ t2

t1

∫ L

0

[
−ρ

∂2u

∂t2
δu− τ

∂u

∂x

∂δu

∂x

]
dx dt =

∫ t2

t1

∫ L

0

[
−f(x, t)δu+ γ

∂u

∂t
δu

]
dx dt (122)
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Similarly, integrating the second term in Equation (120) by parts with respect to x, we have

−
∫ t2

t1

∫ L

0
τ
∂u

∂x

∂δu

∂x
dx dt =

∫ t2

t1

[
τ

∫ L

0

∂2u

∂x2
δu dx− τ

∂u

∂x
δu|L0

]
dt (123)

Substitution of (123) into (122) yields∫ t2

t1

{∫ L

0

[
τ
∂2u

∂x2
− ρ

∂2u

∂t2
+ f(x, t)− γ

∂u

∂t

]
δu dx + τ

∂u(0, t)

∂x
δu(0, t)− τ

∂u(L, t)

∂x
δu(L, t)

}
dt = 0 (124)

The variations must be consistent with the boundary conditions – i.e. if the boundary condition vanishes,
then the variation of the boundary condition also vanishes – so the admissible boundary conditions for
general homogeneous boundary conditions are:

1. fixed boundaries: u(0, t) = u(L, t) = 0 or

2. roller-constrained boundaries: ∂u(0,t)
∂x = ∂u(L,t)

∂x = 0. In general, mixed combinations of the so-called
Dirichlet (displacement) and Neumann (strain) boundary conditions may apply as well.5

In our fixed-fixed string example, the first set of displacement boundary conditions apply. Hence,
applying the applicable boundary conditions, Equation (124) becomes∫ t2

t1

∫ L

0

[
τ
∂2u

∂x2
− ρ

∂2u

∂t2
+ f(x, t)− γ

∂u

∂t

]
δu dx dt = 0 (125)

Thus, by the fundamental lemma of the calculus of variations, since the variation δu is arbitrary,
except on the boundaries and at the arbitrary times, t1, and t2, we must have

−τ
∂2u

∂x2
+ ρ

∂2u

∂t2
+ γ

∂u

∂t
= f(x, t) (126)

5See: http://en.wikipedia.org/wiki/Dirichlet_boundary_condition and http://en.wikipedia.org/wiki/Neumann_
problem
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x = 0 x = L

m

K

Figure 10. String with left end fixed and right end bearing an elastically-supported roller of mass, m.

Example 5.1 Consider the string shown in Figure 10, and assuming the presence of distributed vis-
cous damping characterized by equivalent viscous damping coefficient, γ, as described in Section 5, apply
Hamilton’s principle to determine the equation of motion and boundary conditions.

Solution:

Equations (115) and (116) are still valid, but the additional kinetic and potential energy contributed
by the boundary mass and spring must be included. Hence, we have:

V =
1

2
τ

∫ L

0

(
∂u

∂x

)2

dx+
1

2
Ku2(L, t) (127)

Likewise, the kinetic energy is given by

T =
1

2
ρ

∫ L

0

(
∂u

∂t

)2

dx+
1

2
Mu̇2(L, t) (128)

where the u̇ = ∂u/∂t notation has been used on the boundary kinetic energy term for convenience of
notation while explicitly indicating that pertains to the boundary point, x = L.

The nonconservative virtual work done by the system against the equivalent viscous damping is given
by

δWnc = γ

∫ L

0

∂u

∂t
δu dx (129)

Hence,

δ

∫ t2

t1

[T − V ] dt = δ

∫ t2

t1

{∫ L

0

[
1

2
ρ

(
∂u

∂t

)2

− 1

2
τ

(
∂u

∂x

)2
]
dx+

1

2
Mu̇2(L, t)− 1

2
Ku2(L, t)

}
dt =

γ

∫ L

0

∂u

∂t
δu dx (130)

Taking the variation under the integrals and integrating by parts as before yields:

∫ t2

t1

{∫ L

0

[
τ
∂2u

∂x2
− ρ

∂2u

∂t2
− γ

∂u

∂t

]
δu dx + τ

∂u(0, t)

∂x
δu(0, t)

−
(
Mü(L, t) +Ku(L, t) + τ

∂u(L, t)

∂x

)
δu(L, t)

}
dt = 0 (131)
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Since all of the variations are arbitrary and independent, except for the variation of the fixed left boundary
which must vanish to be consistent with zero displacement, we obtain:

−τ
∂2u

∂x2
+ ρ

∂2u

∂t2
+ γ

∂u

∂t
= 0 (132)

u(0, t) = 0 (133)

and
Mü(L, t) +Ku(L, t) + τ

∂u(L, t)

∂x
= 0 (134)
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