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1 Introduction

One of the most common tasks in vibration analysis is the determination of the steady-state response of a system
to harmonic forcing. This is also true in AC electrical circuit analysis. The most common case encountered in
vibration engineering is that of the forced underdamped system. In this case, the transient portion of the response
vanishes exponentially as e−ζωt, where ζ is the so-called dimensionless damping constant, and for the underdamped
case, 0 < ζ < 1. The prototypical mass-spring-damper system is shown in Figure 1, where in the harmonically
forced case, we shall assume that F (t) = F0 sinωt, where ω is the forcing frequency in radianssecond .
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Figure 1. Prototypical forced mass-spring-damper system

In the following, we shall determine the steady-state response to harmonic forcing via two methods: (1) the
conventional approach via the method of undetermined coefficients, and (2) the Phasor method. First, we note that
the equation of motion is given by

Mẍ+ Cẋ+Kx = F0 sinωt. (1)

Equation (1) may be recast as

ẍ+ 2ζωnẋ+ ω2
nx =

F0

M
sinωt. (2)

Equation (2) is the so-called canonical form of the equation of motion. Assuming the underdamped case
(0 < ζ < 1), we may find the homogeneous or transient solution is given by

xh(t) = e−ζωnt (A cosωdt+B sinωdt) , (3)

where the undamped natural frequency ωn =
√

K
M , and the damped natural frequency ωd = ωn

√
1− ζ2
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2 The Forced Response Via the Method of Undetermined Coefficients

The forced or particular solution is given by

xp(t) = C1 cosωt+ C2 sinωt. (4)

Substitution of Equation (4) into Equation (2) yields(
−ω2C1 cosωt− ω2C2 sinωt

)
+ 2ζωnω (−C1 sinωt+ C2 cosωt) (5)

+ω2
n (C1 cosωt+ C2 sinωt) =

F0

M
sinωt.

Collecting the coefficients of sin and cosine in Equation (6) yields

− 2ζωnωC1 +
(
ω2
n − ω2

)
C2 =

F0

M
, (6)

and (
ω2
n − ω2

)
C1 + 2ζωnωC2 = 0. (7)

Dividing Equations (6) and (7) by ω2
n, and recasting them in matrix form yields[
−2ζr

(
1− r2

)(
1− r2

)
2ζr

](
C1

C2

)
=

(
F0

K

0

)
(8)

where r = ω
ωn

. Solving for C1 and C2 yields

C1 = −
2ζ rF0

K

(2ζr)
2

+ (1− r2)
2 , (9)

and

C2 =

(
1− r2

)
F0

K

(2ζr)
2

+ (1− r2)
2 . (10)

Hence, the total solution is given by

x(t) =
F0

KR2

(
−2ζr cosωt+

(
1− r2

)
sinωt

)
+e−ζωnt (A cosωdt+B sinωdt) , (11)

where A and B depend on the initial conditions, and

R2 = (2ζr)2 + (1− r2)2. (12)

Clearly, as t→∞, x(t)→ xp(t), where, xp(t) is the particular, or steady-state solution to Equation (2).

Thus, at steady-state, x(t) = xp(t), and we have

x(t) =
F0

KR
(sinφ cosωt− cosφ sinωt) , (13)

where,
2ζr

R
= sinφ, (14)

and
1− r2

R
= cosφ. (15)

From trigonometry1, we have sin(θ − φ) = sin θ cosφ− cos θ sinφ. Hence, we may rewrite Equation (13) as

x(t) =
F0

KR
sin(ωt− φ), (16)

1See Equation (7) in “Some Useful Complex Algebra and Trigonometric Relationships,” D. S. Stutts, March 10, 2004.
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where,

tanφ =
sinφ

cosφ
=

2ζr

1− r2
. (17)

Thus,

φ = tan−1

(
2ζr

1− r2

)
for r ≤ 1, (18)

or

φ = π + tan−1

(
2ζr

1− r2

)
for r > 1. (19)

Equation (16) reveals that the steady-state response of the system may be written in terms of a magnitude and a
phase shift.

x(t) = X sin (ωt− φ) , (20)

where

X =
F0

KR
=

F0

K

√
(2ζr)

2
+ (1− r2)

2
. (21)

Examination of Equation (20) leads to a much quicker route of analysis.

From Equations (13) through (17), we may write the displacement X as a complex vector in the following manner

X =
F0

KR
[cosφ− j sinφ] . (22)

Let us now define a mechanical impedance Z(r)(= Z(ω)) – analogous to electrical impedance except that in this
case, current and voltage are replaced by force and displacement respectively – given by
Hence,

Z(r) =
X

F0
=

1

KR
[cosφ− j sinφ] , (23)

so
X = Z(r)F0. (24)

From Equations (14) and (15), the impedance may be recast in polar form (magnitude and phase) as

Z(r) =
X

F0
=

e−jφ

K

√
(2ζr)

2
+ (1− r2)

2
=
e−jφ

KR
. (25)

In equation (24), F0 is the magnitude of the harmonic input force, and X provides information about the magnitude
as well as the direction of the response. Defining the real and imaginary parts of Z as

R1 =
cos θ

KR
(26)

and

R2 =
sin θ

KR
(27)

the mechanical impedance for the system is shown graphically in Figure 22.

If we consider a complex forcing function given by

f(t) = F0e
jωt = F0 (cosωt+ j sinωt) , (28)

Then, we may compute the response r(t) from Equations (23) and (24)

r(t) = Z(r)f(t) =
F0

KR
[cosφ− j sinφ] (cosωt+ j sinωt) . (29)

2Although the the phase is actually negative, it is shown here in the first quadrant for clarity.
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Figure 2. Polar (phasor) representation of the mechanical impedance in the complex plane.

Completing the multiplication in Equation (29), and grouping real and imaginary terms yields

r(t) =
F0

KR
[cosφ cosωt+ sinφ sinωt+ j (cosφ cosωt− sinφ sinωt)] . (30)

or

r(t) =
F0

KR
cos (ωt− φ) + j

F0

KR
sin (ωt− φ) . (31)

Defining two complex vector operations Re {r(t)}, and Im {r(t)} to take the real and imaginary parts of r(t)
respectively, Equation (31) may be written as

r(t) =
F0

KR

[
Re
{
e(ωt−φ)

}
+ jIm

{
e(ωt−φ)

}]
. (32)
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Figure 3. Polar (phasor) representation of the system response to harmonic forcing

Hence, we see that the steady-state system response is related to the harmonic forcing as shown in Figure 3.

Thus, the steady-state response of a system to a harmonic forcing function, f(t) = F0 sinωt, or f(t) = F0 cosωt,
may be computed by assuming f(t) = F0e

jωt, and taking the imaginary or real part of the result respectively. It is
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clear from Figure 3 that the steady-state response of a system to either f(t) = F0 sinωt, or f(t) = F0 cosωt may be
thought of as a projection of the response due to f(t) = F0e

jωt on the imaginary or real axes in the complex plane.

3 The Phasor Method

Given the result shown in Equations (31) and (32), we may approach the solution of Equation (2) for the steady-
-state response in a completely different manner. Letting x(t) = XIm

{
ejωt

}
, and substituting into Equation (2),

yields3 [
ω2
n − ω2 + j2ζωnω

]
XIm

{
ejωt

}
=
F0

M
Im
{
ejωt

}
=
F0ω

2
n

K
Im
{
ejωt

}
. (33)

Canceling the phasors on either side of Equation (33),dividing by ω2
n, and solving for X, yields

X =
F0

K [1− r2 + j2ζr]
=

F0e
−jφ

K

√
(1− r2)

2
+ (2ζr)

2
, (34)

where,as before, r = ω
ωn

, and φ is given by Equation (18). Thus, the steady-state solution is given by

x(t) =
F0e

−jφ

K

√
(1− r2)

2
+ (2ζr)

2
Im
{
ejωt

}
=

F0

K

√
(1− r2)

2
+ (2ζr)

2
Im
{
ej(ωt−φ)

}
, (35)

or,

x(t) =
F0

K

√
(1− r2)

2
+ (2ζr)

2
sin (ωt− φ) = |X| sin (ωt− φ) . (36)

Examination of Equations (12) and (21), reveals that the result given in Equation (36) is identical to that obtained
in Equation (20), but using the phasor method, required far fewer algebraic steps. The approach is identical for
f(t) = F0 cosωt, except that a solution of the form x(t) = Re

{
ejωt

}
is assumed instead.
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Figure 4. Force vector relationships for a harmonically forced spring-mass-damper system.

The phase relationship between the individual force components of the system as described by Equation (1) are
shown graphically in Figure 4, where it may be seen that the damper force and inertial forces are 90◦ and 180◦ out
of phase with the spring force respectively.

3The Real and Imaginary components yield two scalar equations.

5



The phasor method is credited to Charles Proteus Steinmetz who was an engineer at General Electric around the
turn of the century. With the growing importance of AC circuitry, Steinmetz was compelled to develop a quicker
method of analysis because determining the steady-state response of even relatively simple circuits to harmonic
voltage excitation is extremely tedious using conventional methods.
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