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1 Introduction to Frequency Methods

Using frequency methods, it is possible to determine a great deal of information from the open-loop
transfer function. One of the most important facts about a given system which may be determined via
frequency methods is the relative stability of the system. There are two principal measures of system
stability determined via frequency methods: Gain Margin, and Phase Margin. These two measures may
be read from Nyquist plots or Bode plots, both of which may be easily constructed using MATLAB.
Below, we will first discuss the Nyquist criteria, and work an example, then we will apply MATLAB’s
Bode plotting capabilities to obtain the same information.

2 Nyquist Criteria

The stability of a system may be determined graphically from the open-loop transfer function in yet
another way besides the root locus. The open-loop TF, F (s) = G(s)H(s), is a function of the complex
variable, s, and may be thought to map a collection of points forming a curve from the s-plane to the
F (s)-plane. A corresponding curve will be formed in the F (s)-plane. This concept is illustrated in Figure
1.

The fact that another continuous curve results may be argued based on the continuity of F (s). Es-
sentially, two non-singular points (points other than the poles of F (s)) in the complex plane, which are
within a distance δ of one another will map to two new points through the function F (s) which are within
a distance ε of each other. This is illustrated in Figure 2.
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Figure 1. Mapping in the complex plane.
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Figure 2. Continuity of curves through a mapping F (s).

Hence any two non-singular points in the complex plane (denoted by C) which are within a δ-
neighborhood of each other will map through a continuous function, F (s) to the F (s)-plane to lie within an
ε-neighborhood of one another. Mathematically: F (s) is said to be a continuous function, if ∀ {s1, s2} ∈ C,
and which are not singular points of F (s), ∃ δ, and ε such that |s2 − s1| ≤ δ ⇒ |F (s2)− F (s1)| ≤ ε.

Some additional preliminaries are necessary before discussing the Nyquist criteria. Fist, letting
G(s) = NG

DG
, and H(s) = NH

DH
, so that the open-loop transfer function is given by G(s)H(s) = NGNH

DGDH
,

and the characteristic equation is given by 1 +G(s)H(s) = 1 + NGNH
DGDH

= DGDH+NGNH
DGDH

.

Two important facts to note from this exercise are:

1. The poles of G(s)H(s) (the open-loop poles) are known, and are the poles of 1 +G(s)H(s).

2. The zeros of 1 + G(s)H(s), which are not known in general, are the roots of the characteristic
equation, and hence, the closed-loop poles.

2.1 Geometry of resulting maps

The orientation of the resulting curve in the F (s)-plane yields a great deal of information about the
mapping function, F (s). The following are important concepts regarding the orientation of the mapping:

1. If the path of the curve in the s-plane, Γs, encircles a zero of F (s), then the resulting path in the
F (s)-plane, ΓF (s) will encircle the origin, and preserve the orientation of Γs – i.e. clockwise, (CW)
or counterclockwise (CCW).

2. If Γs encircles a pole of F (s), then the resulting path, ΓF (s) will encircle the origin, but in the
opposite sense of Γs – i.e. clockwise, (CW) or counterclockwise (CCW).

3. If Γs encircles neither a pole nor a zero of F (s), then the resulting path in the F (s)-plane, ΓF (s),
will not encircle the origin.

4. If Γs encircles the same number of poles as zeros, then the net phase change of F (s) will be zero,
and ΓF (s) will not encircle the origin in the F(s)-plane.

The phase of F (s) at a given point on Γs is determined by the principle of the Argument of F (s),
∠F (s). That is, the sum of the phase contributions of each vector from the poles and zeros of F (s) to
the curve, Γs, contribute to the phase of F (s) as Γs is mapped to ΓF (s). The angle between the vector R
to ΓF (s) with respect to the real axis is given by Φ = −φ1 − φ2 − φ3. This process is illustrated in Figure

3 and in Figure 4, where in case (a) the system is given by F (s) = K(s+ z1), and in (b) by F (s) = K
s+p1

.
Figure 5 illustrates the mapping of a circle of 21 points and unit radius around the pole at s = −2 in

the s-plane to F (s) = 2/(s+ 2). The the mapped curve encircles the origin in the opposite direction due
to the negative phase of F (s). The Maple (version 12) code to produce these plots is given in Appendix
B.
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Figure 3. Mapping of Γs to ΓF (s) for a system with three poles.
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Figure 5. Mapping of s and F (s) for F (s) = 2/(s+ 2).
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2.2 Detection of closed-loop poles in the right half-plane

If we let F (s) = 1 + G(s)H(s), and then let Γs encircle the entire right half plane in the CW direction
without passing through any poles of F (s), any CW encirclements of the origin by the mapping ΓF (s)

will correspond to the zeros of F (s), which are also the system closed-loop poles in the right-half plane –
provided there are no open-loop poles or zeros in the right half-plane. Systems with no open-loop poles
in the right half-plane are termed minimum phase systems. Minimum phase systems are very common,
and are amenable to a simplified Nyquist analysis detailed in the next section.

Since the function F (s) = 1 + G(s)H(s) is merely the open-loop transfer function shifted, we really
need only map through F (s) = G(s)H(s), and count the encirclements of the point s = −1. This is how
the Nyquist sketch is made in practice.

If H(s)G(s) contains finite poles in the right half of the complex plane, then the evaluation of the
Nyquist mapping becomes slightly more complicated. Letting N denote the number of encirclements of
s = −1, Z denote the number of zeros of 1 +H(s)G(s), closed-loop poles, in the right half-plane, and P
denote the number of finite open-loop poles in the right half plane. We have

N = Z − P. (1)

Hence, if P 6= 0, stability (Z = 0) requires that

N = −P, (2)

which indicates P CCW encirclements of s = −1.

It is important to note that while finite open-loop zeros of H(s)G(s) may correspond to CW encir-
clements of the origin, it is only CW encirclements of the critical point, s = −1, that matter in the
determination of stability, since these correspond to the zeros of 1 + H(s)G(s). In addition, Equation
(1) may be used not only to determine stability, but also the number of closed-loop poles in the right
half-plane.

The Nyquist mapping also reveals the concept of Gain and Phase Margin, whereby the degree of
stability or instability may be quantified. These concepts apply in general to any system, but will be
detailed in the following section on so-called minimum phase systems.

3 Simplified Nyquist Criteria

Consider the following example:

G(s) =
K

s(s+ 4)(s+ 6)
, (3)

so that

T (s) =
K

s3 + 10s2 + 24s+K
. (4)

This system is of the minimal phase variety, having no finite open-loop poles or zeros in the right half-
plane.

The Routh-Hurwitz criteria predicts stability for 0 ≤ K ≤ 240, so the critical value of gain is K = 240.
The Nyquist map is constructed for three cases: (1) one-half of critical gain, (2) critical gain, and (3)
twice critical gain, and illustrated for each case in Figure 6. These plots were made using the MATLAB
function, nyquist.m which plots the Nyquist plot from ω = 0 to ω = +∞,and then simply reflects the
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Table 1. Routh Table

s3 1 24

s2 10 K

s 240−K
10 0

s0 K

resulting plot into the upper half of the complex plane to represent the plot from ω = −∞ to ω = 0. The
Nyquist plot will be symmetric if Γs is symmetric.
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Figure 6. Nyquist plots for K = 120, 240 and 480.

The gain and phase margin is shown for the stable, K = 120 case, but may also be defined for the
unstable case as well. In the unstable case, we have negative gain and phase margins. The gain margin
represents the amount of gain required to render the system marginally stable. For unstable systems, the
negative gain margin, usually expressed in decibels (dB), indicates the amount by which the gain must
be divided to reach marginal stability. The phase margin is defined as the angle between a line drawn
from the origin through the crossing of the unit circle by the Nyquist mapping, ΓF (s). The phase margin
may also be negative, and is usually expressed in degrees.

3.1 Sketching the Nyquist plot by hand

It is possible, with practice, to rapidly sketch the Nyquist mapping. The contour, Γs must be chosen so
that it does not pass through any of the poles of H(s)G(s). This presents no difficulties in principle, but
care must be taken to take the contour to the right of any purely imaginary poles. Hence, each jω-axis
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pole will contribute −180◦ as Γs passes to its right. This process is illustrated in Figure 7 where it can be
seen that each pole on the jω-axis requires a semicircular detour of infinitesimally small radius, ε. The
contour then proceeds to complex infinity to contain the entire right half-plane. It can be seen that each
pole on the imaginary axis contributes −180◦ of phase as it is passed.
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Figure 7. Contour, Γs for a system with open-loop poles on the imaginary axis.

We note that the resulting radius of the mapped contour, ΓF (s), is given by

R =
1

V1V2V3V4V5
, (5)

so its magnitude varies from zero, as the contour, Γs approaches infinity, to infinity as it passes within ε
of one of the poles. This process is best illustrated by an example.

Given F (s) = H(s)G(s) = 480
s(s+4)(s+6) , we may construct the Nyquist plot via the following process:

1. First, we plan the contour in the s-plane such that it passes to the right of the single pole of F (s)
on the origin.

2. Next, we sketch the contours, Γs, and ΓF (s), identifying corresponding points of interest between
the two. This is illustrated in Figure 8 where lower case letters on the Γs contour correspond to
upper case letters in the ΓF (s) contour. We may determine the critical points, B

′
and E

′
, by setting

the imaginary part of F (s) equal to zero.

F (jω) = G(jω)H(jω) =
480

−10ω2 + jω(24− ω2)
, (6)

so Im {F (jω)} = 0⇒ ω = ±
√

24⇒ F (jω) = −480
240 = −2.

Hence, the contour ΓF (s) passes through the point, s = −2 twice as Γs passes through the points, b
′

and

e
′

at s = j±
√

24, so the Nyquist contour encircles the point s = −1 twice in the CW fashion, as expected
given that this system has two closed-loop poles in the right half-plane. The value of s at the critical
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point, s = ±
√

24, corresponds to the to the jω-axis crossing for this system on the root locus.
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Figure 8. Illustration of the Nyquist mapping process.

It should be noted that the MATLAB function, nyquist.m, only plots the portion of the plot between
points b and c, and then reflects the resulting plot into the upper half of the complex plane due to
symmetry. Hence, the resulting contour, ΓF (s), produced by MATLAB consists of the segment BC and
its reflection. The numerically produced plot, one of those shown in Figure 6, is obviously much easier to
obtain, and much cleaner!

3.2 Gain and phase margin from Bode plots

The information in the polar Nyquist plot may also be found in the Bode Plot, where magnitude and
phase are separated. The same example given in the previous section is displayed in Figures 9 through
11, which were obtained using the MATLAB version 5.0 (and, more recently, via version 7.01 in the case
of Figure 11) command, margin.m.

The gain and phase margins are given in terms of how much either may be increased before instability
results. When these metrics are negative, the system is already unstable, and the values given represent
the amount by which either must be reduced to achieve stability. For the gain margin, since the metric
are given in dB, a negative gain margin implies that the gain must be divided by a factor, Gm, where Gm
is related to the gain margin in decibels as shown in Equation (7).

Gm = 10
GmdB

20 (7)

The gain margin is determined by locating the phase crossing of the −180◦-line, and drawing a vertical
line up to the corresponding magnitude plot. The distance between the 0-dB line and the magnitude plot
is the gain margin. The frequency at which this crossing occurs is called the gain margin frequency, or
ωG (ωcg in MATLAB).

The the phase margin is determined in a similar way. A vertical line is drawn down from the 0-dB
crossing at ωΦ (ωcp in MATLAB) of the magnitude plot through the corresponding phase plot. The
distance between the phase plot and the −180◦-line is the phase margin.
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Figure 9. Bode magnitude and phase plots for K = 120.
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Figure 10. Bode magnitude and phase plots for K = 240.
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4 Nyquist Plots of Systems with Delays

The simplified Nyquist criteria may be used to graphically determine the Gm and Φm for systems with
delays. Such systems have an open-loop transfer function of the form

F (s) = KG(s)H(s)e−sT (8)

where T denotes the time delay in seconds between the input and the measured response. Because the
exponential function is irrational, the Routh-Hurwitz method will not work, nor is it possible to plot
the root-locus. Fortunately, the simplified Nyquist method incorporating the delay is easily implemented
in MATLAB. For s = jω, the delay function, e−sT is a pure clockwise rotation of the points mapped
to through KG(jω)H(jω). Hence, a stable system such as the system given by (1) with K = 120 will
eventually become unstable given sufficient response lag, T . The delay has the effect of rotating the
resultant spiral obtained by plotting the imaginary versus real parts of KG(jω), so that it tends to
encircle the s = −1 point. This effect is illustrated in Figure 12.

It can be seen that the system is just barely stable with a delay of T = 0.1 seconds. The MATLAB
function which was used to produce Figure 12 is given in the MATLAB M-Files section.

5 Conditions for Marginal Stability for Systems with Delays: A Second-Order Ex-
ample

A relationship between the delay, gain, and forcing frequency may be obtained by expanding Equation
(8) evaluated at s = jω. Setting

F (jω) = KG(jω)H(jω)e−jωT = KG(jω)H(jω) (cosωT − j sinωT ) (9)

yields the two criteria for instability
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Im {F (jω)} = 0 (10)

and
|Re {F (jω)} | > 1 (11)

For example, consider a second order system with open-loop transfer function

G(s) =
Ke−sT

s2 + 2ζωns+ ω2
n

(12)

at s = jω, Equations (10) and (11) yield the following equations at marginal stability

tanωT =
2ζωn
ω

(13)

and
K = ω

√
ω2 + 4ζ2ω2

n (14)

Equations (13) and (14) supply the necessary, and combined, the sufficient conditions for marginal sta-
bility. Hence, Equations (13) and (14) may be recast as

ω =

√√
4ζ4ω4

n +K2 − 2ζ2ω2
n (15)

and

ω =
1

T
arctan

(
2ζωn
ω

)
(16)
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and combined to yield the relationships between gain, K, forcing frequency, ω, and delay, T for
marginal stability in a second order unity feedback system:

ω =
2ζωn

arctan

(
T
√√

4ζ4ω4
n +K2 − 2ζ2ω2

n

) (17)

or

T =
tan

(
2ζωn

ω

)
√√

4ζ4ω4
n +K2 − 2ζ2ω2

n

(18)

or

K =
arctan

(
2ζωn

ω

)
T 2

√
arctan2

(
2ζωn
ω

)
+ 4ζ2ω2

nT
2 (19)

Equations (17), through (19) establish the upper bound on forcing frequency, gain, and delay for second-
order system stability in terms of the system parameters and each other. Using Equations (17), through
(19), limiting cases may be easily investigated. For example, for ω >> 2ζωn, we have, from (19)

K ≈ 4ζ2ω2
n

ωT
(20)

6 Appendix A: MATLAB M-Files

% Function: nyqdel.m

%

% Author: Dr. D. S. Stutts

% Associate Professor of Mechanical Engineering

% and Engineering Mechanics

% University of Missouri-Rolla

%

% Version: 1.0b 4-26-99

%

%

% Purpose: plots the Nyquist graph of a system with a delay of T seconds

% defined by the vectors num for numerator, and den for

% denominator polynomials describing the open-loop transfer

% function. Useful for systems with no open-loop poles

% or zeros in the right half of the complex plane.

%

% num: numerator polynomial coefficients.

% den: denominator polynomial coefficients.

% T: Time delay in seconds.

% omegaMax: maximum frequency in radians per second.

% mxpts: Number of points to plot.

% color: character for desired color of plot.

% Must be inclosed in single quotes, ’b’ for blue, for

% example. See ’plot’ for color options.

%

function niq(num,den,T,Maxomega,mxpts,color)

label=num2str(T)

11



w=logspace(0,Maxomega,mxpts);

n=length(w)

for i=1:n,

g(i)=exp(-T*j*w(i))*polyval(num,j*w(i))/polyval(den,j*w(i));

end

maxre=max(real(g))

minre=min(real(g))

maxim=max(imag(g))

minim=min(imag(g))

op1=strcat(color,’-’)

legend=strcat(’T = ’,label,’ sec’)

plot(g,op1)

axis([minre-.1*abs(minre) maxre+.1*abs(maxre) minim-.1*abs(minim) maxim+.1*abs(maxim)])

grid on

sgrid(0,1)

text(-1,0,’+’)

text(real(g(5)),imag(g(5)),legend)

xlabel(’Real’)

ylabel(’Imaginary’)

title(’Nyquist plot with delay of T seconds’)

7 Appendix B: Maple 10 Mapping Code

In the following code all output is suppresed via the colon to save space.

#

# The following is a short example of mapping in the complex plane.

# It illustrates the geometric effect of pole factors on the

# orientation of the resulting curve.

#

# Note that this text should be cut and pasted into

# a "Code Edit" region in Maple (Version 12+),

# and then executed via the right mouse button options.

#

# DSS: 11/21/05, Revised 12-1-08:DSS

#

# Define mapping function:

#

F := unapply(2/(z+2), z):

# Define mapping to construct a circle of unit radius #around the pole at s = -2:

x := unapply(-2+cos(theta), theta):

y := unapply(sin(theta), theta):

s := unapply(x(theta)+I*y(theta), theta):

plot([Re(s(theta)), Im(s(theta)), theta = 0 .. 2*Pi], -4 .. 4, -4 .. 4,

labels = ["Re{s}", "Im{s}"], labeldirections = [horizontal, vertical]);

# Generate an array of 21 angles around the circle at which to plot a point:

thetapoints := [seq(1/10*(i-1)*Pi, i = 1 .. 21)]:

#Load the plots library

with(plots):
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# Calculate the points on the circle in the s-plane around the pole:

spoints := [seq([Re(s(thetapoints[i])), Im(s(thetapoints[i]))], i = 1 .. 21)]:

numbers := [seq(i, i = 1 .. 21)]:

# Define axis labels

labelxs:= "Re{s}":

labelys:= "Im{s}":

labelxF := "Re{F(s)}":

labelyF := "Im{F(s)}":

# Plot the points and note the order in the counter clockwise or + direction.

# Note also that I’ve appended the last points [-4, -4, " "], and [4, 4, " "]

# to trick the textplot function into scaling the plots the way I wanted them.

textplot([seq([Re(s(thetapoints[i])), Im(s(thetapoints[i])),

numbers[i]], i = 1 .. 21),[-4, -4, " "], [4, 4, " "]], labels = [labelxs, labelys],

labeldirections = [horizontal, vertical], font = [times, italic, 8], color=red);

# Create a list of mapped points and their respective label

# numbers to plot using textplot():

Ftext := [seq([Re(F(s(thetapoints[i]))), Im(F(s(thetapoints[i]))),

numbers[i]], i = 1 .. 21),[-4, -4, " "], [4, 4, " "]]:

# Plot the resulting mapping and note that the orientation of the

# encirclement of the origin is in the clockwise

# or negative direction:

textplot(Ftext, labels = [labelxF, labelyF], labeldirections = [horizontal, vertical],

font = [times, italic, 8], color=red);
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