Some Useful Complex Algebra and Trigonometric Relationships

DSS: November 26, 2013
On the road to becoming a "card carrying wave mechanic," there are several very useful trigonometric relationships and properties which should be understood. One of the most basic is Euler's relationship

$$
\begin{equation*}
e^{ \pm j \theta}=\cos \theta \pm j \sin \theta \tag{1}
\end{equation*}
$$

Equation (1) makes it very easy to derive many useful identities:

$$
\begin{equation*}
e^{j(\theta+\phi)}=\cos (\theta+\phi)+j \sin (\theta+\phi)=(\cos \theta+j \sin \theta)(\cos \phi+j \sin \phi) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{j(\theta-\phi)}=\cos (\theta-\phi)+j \sin (\theta-\phi)=(\cos \theta+j \sin \theta)(\cos \phi-j \sin \phi) . \tag{3}
\end{equation*}
$$

Equations (2) and (3) lead to the following additive and difference angle formulas:

$$
\begin{align*}
\cos (\theta+\phi) & =\cos \theta \cos \phi-\sin \theta \sin \phi \tag{4}\\
\cos (\theta-\phi) & =\cos \theta \cos \phi+\sin \theta \sin \phi \tag{5}\\
\sin (\theta+\phi) & =\cos \theta \sin \phi+\sin \theta \cos \phi \tag{6}\\
\sin (\theta-\phi) & =\sin \theta \cos \phi-\cos \theta \sin \phi \tag{7}
\end{align*}
$$

Equations (4) - (7) lead to the following product identities:

$$
\begin{align*}
\sin \theta \cos \phi & =\frac{1}{2}\{\sin (\theta+\phi)+\sin (\theta-\phi)\} \tag{8}\\
\sin \theta \sin \phi & =\frac{1}{2}\{\cos (\theta-\phi)-\cos (\theta+\phi)\} \tag{9}\\
\cos \theta \cos \phi & =\frac{1}{2}\{\cos (\theta+\phi)+\cos (\theta-\phi)\} \tag{10}
\end{align*}
$$

Other identities useful in describing the so-called beating phenomenon are:

$$
\begin{align*}
& \sin \theta \pm \sin \phi=2 \sin \left(\frac{\theta \pm \phi}{2}\right) \cos \left(\frac{\theta \mp \phi}{2}\right) \tag{11}\\
& \cos \theta+\cos \phi=2 \cos \left(\frac{\theta+\phi}{2}\right) \cos \left(\frac{\theta-\phi}{2}\right) \tag{12}
\end{align*}
$$

and

$$
\begin{equation*}
\cos \theta-\cos \phi=-2 \sin \left(\frac{\theta+\phi}{2}\right) \sin \left(\frac{\theta-\phi}{2}\right) \tag{13}
\end{equation*}
$$

Equations (4) - (7) have another useful application in describing the sum of a cosine and a sine term of the same frequency, but different amplitudes. For example: let $z(t)=A \cos \omega t+B \sin \omega t$. Then, we may write

$$
\begin{equation*}
z(t)=\sqrt{A^{2}+B^{2}}\left[\frac{A}{\sqrt{A^{2}+B^{2}}} \cos \omega t+\frac{B}{\sqrt{A^{2}+B^{2}}} \sin \omega t\right] . \tag{14}
\end{equation*}
$$

We may then apply, for example, Equation (5) to obtain

$$
\begin{equation*}
z(t)=\sqrt{A^{2}+B^{2}} \cos (\omega t-\phi) \tag{15}
\end{equation*}
$$

where,

$$
\begin{equation*}
\phi=\tan ^{-1}\left(\frac{B}{A}\right) . \tag{16}
\end{equation*}
$$

Note that Equation (14) may be expressed as

$$
\begin{equation*}
z(t)=\sqrt{A^{2}+B^{2}} R e\left\{e^{j(\omega t-\phi)}\right\} \tag{17}
\end{equation*}
$$

where Re denotes the Real part of Equation (1). Hence, Equation (17) may be thought of as the Real projection of a vector in the complex plane. This is called the phasor representation of a harmonic function, and is used extensively in the study of steady-state harmonic vibrations as well as AC circuit analysis.

Figure 1. Graphical representation of a complex number.
Any complex number may be represented in either Cartesian or polar form. For example:

$$
\begin{equation*}
z=a+j b=\sqrt{a^{2}+b^{2}} e^{j \phi} \tag{18}
\end{equation*}
$$

where $a=\operatorname{Re}\{z\}$, and $b=\operatorname{Im}\{z\}$, and a and b may be positive or negative, the phase may be written

$$
\phi= \begin{cases}\tan ^{-1}\left(\frac{b}{a}\right) & \text { for } z \text { in Quad. I } \tag{19}\\ 180^{\circ}+\tan ^{-1}\left(\frac{b}{a}\right) & \text { for } z \text { in Quad. II and III } \\ 360^{\circ}+\tan ^{-1}\left(\frac{b}{a}\right) & \text { for } z \text { in Quad. IV }\end{cases}
$$

The relationship between Cartesian and polar forms may be seen graphically in Figure 1, where $z=r e^{j \phi}$, so

$$
\begin{gather*}
r=\sqrt{a^{2}+b^{2}} \tag{20}\\
a=r \cos \phi \tag{21}
\end{gather*}
$$

and

$$
\begin{equation*}
b=r \sin \phi \tag{22}
\end{equation*}
$$

Polar form is often more convenient for calculations. For example, let $z_{1}=a+j b$, and $z_{2}=c+j d$, we have the following relations:

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{a+j b}{c+j d}=\frac{a+j b}{c+j d}\left(\frac{a-j b}{c-j d}\right)=\frac{a c+b d}{c^{2}+d^{2}}+j \frac{b c-a d}{c^{2}+d^{2}} \tag{23}
\end{equation*}
$$

but in polar form, we have

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{j \phi_{1}}}{r_{2} e^{\phi_{2}}}=\frac{r_{1}}{r_{2}} e^{j\left(\phi_{1}-\phi_{2}\right)} \tag{24}
\end{equation*}
$$

which is computationally simpler.
Polar form is especially useful in extracting roots of numbers. for example, the cube root of 27 may be found as follows:

$$
\begin{equation*}
z^{3}-27=0 \Rightarrow z^{3}=27=27 e^{j 2 n \pi} \tag{25}
\end{equation*}
$$

where n is an integer. Hence, we have

$$
\begin{align*}
& n=1 \Rightarrow z=3 e^{j 2 \pi / 3}=-\frac{3}{2}+j \frac{3}{2} \sqrt{3} \tag{26}\\
& n=2 \Rightarrow z=3 e^{j 4 \pi / 3}=-\frac{3}{2}-j \frac{3}{2} \sqrt{3} \tag{27}
\end{align*}
$$

and

$$
\begin{equation*}
n=3 \Rightarrow z=3 e^{j 2 \pi}=3 \tag{28}
\end{equation*}
$$

Note that the roots repeat, in this case, for $n>3$. In general, we have ${ }^{1}$

$$
\begin{equation*}
z^{\frac{1}{n}}=r^{\frac{1}{n}} e^{j \frac{\phi}{n}}=r^{\frac{1}{n}}\left(\cos \frac{\phi}{n}+j \sin \frac{\phi}{n}\right) \tag{29}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
z^{n}=r^{n} e^{j n \phi}=r^{n}(\cos n \phi+j \sin n \phi) . \tag{30}
\end{equation*}
$$

For example, from the above, it may be shown that

$$
\begin{equation*}
\cos ^{3} \theta=\frac{1}{4}(3 \cos \theta+\cos 3 \theta) \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin ^{3} \theta=\frac{1}{4}(3 \sin \theta-\sin 3 \theta) \tag{32}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\cos ^{4} \theta=\frac{1}{8}(3+4 \cos 2 \theta+\cos 4 \theta) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin ^{4} \theta=\frac{1}{8}(3-4 \cos 2 \theta+\cos 4 \theta) \tag{34}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ This is an application of DeMoivre's identity. See: http://en.wikipedia.org/wiki/De_Moivre_formula.

