Home Work Problem 5

An infinite parallel-sided slab of length ($0 \leq x \leq L$) of thermal diffusivity α is initially ($\mathrm{t}=0$) at uniform temperature T_{0}. Its two ends are subsequently maintained at a constant temperature T_{1}. Use the explicit method to determine the temperature variation with time and position. First, rewrite the unsteady, one-dimensional governing equation in the nondimensional form using the following non-dimensionalization scheme.

$$
\theta=\frac{T-T_{0}}{T_{1}-T_{0}}, \quad \tau=\frac{\alpha t}{L^{2}}, \quad \xi=\frac{x}{L}
$$

Plot the temperature (θ) distributions at $\tau=0.35,0.25,0.1$ and 0.05 .
Discuss the choice of time steps with regard to stability and accuracy.
Include a copy of your computer program and representative printed results.
Page limit: 5

