Computational Fluid Dynamics (AE/ME 339)
 MAE Dept.

Home Work Problem

For the nozzle shown in the figure use the following transformation to map it into a rectangular domain. The nozzle wall is represented by $y_{\max }=x^{2}$ for $1 \leq x \leq 2$.

$$
\xi=x, \eta=\frac{y}{y_{\max }}
$$

1. Determine numerical values of $\xi_{x}, \xi_{y}, \eta_{x}, \eta_{y}$ at the point $\xi=1.5, \eta=0.5$,
i) analytically
ii) numerically using central differencing.
2. Calculate the Jacobian at the point in (1).

FIG. 5.6
A simple boundary-fitted coordinate system. (a) Physical plane; (b) computational plane.

