

AE/ME 339

Computational Fluid Dynamics (CFD)

K. M. Isaac

9/8/2004 topic5: cn_df_adi

Crank-Nicolson Method

 $9/8/2004 \hspace{1.5cm} topic5: cn_df_adi \hspace{1.5cm} 2$

Computational	Fluid	Dynamics	(AE/ME 339)
---------------	-------	----------	-------------

K. M. Isaac MAEEM Dept., UMR

Crank-Nicolson method

Previous explicit and implicit methods have discretization error

$$\varepsilon = O\Big[\Delta t, (\Delta x)^2\Big]$$

Recall, the central difference formula:

$$\frac{\partial u}{\partial t} = \frac{u_{i,n+1} - u_{i,n-1}}{2\Delta t} + O[(\Delta t)^2]$$

9/8/2004

topic5: cn_df_adi

3

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

Define the central difference operators

$$\delta_{x}u_{i,j} = \frac{u_{i+\frac{1}{2},j} - u_{i-\frac{1}{2},j}}{\Delta x}$$

$$\delta_{x}^{2}u_{i,j} = \frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{(\Delta x)^{2}}$$

Let us now try the following form for the second derivative

$$\frac{\partial^2 u}{\partial x^2} = \delta_x^2 u_{i,n+1} \theta + (1 - \theta) \delta_x^2 u_{i,n}$$

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

The above form involves 6 points to represent

 $\frac{\partial^2 u}{\partial x^2}$

And θ lies in the range:

 $0 \le \theta \le 1$

Depending on the value of θ , the method will be explicit ($\theta = 0$), implicit ($\theta = 1$), or a combination of the two.

For the Crank–Nicolson (C-N) method, $\theta = \frac{1}{2}$. The difference equation now becomes

$$\frac{u_{i,n+1} - u_{i,n}}{\Delta t} = \frac{1}{2} \delta_x^2 u_{i,n+1} + \frac{1}{2} \delta_x^2 u_{i,n}$$

C-N method has the following properties:

i) Stable for <u>all values</u> of the ratio, $\lambda = \Delta t/(\Delta x)2$

9/8/2004

topic5: cn df adi

5

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

(ii) Has truncation error $O\left[\left(\Delta t\right)^2, \left(\Delta x\right)^2\right]$

When written in full, the equation becomes

$$-\lambda u_{i-1,n+1} + 2(1+\lambda)u_{i,n+1} - \lambda u_{i+1,n+1} = \lambda u_{i-1,n} + 2(1-\lambda)u_{i,n} + \lambda u_{i+1,n}$$

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

<u>Dufort-Frankel Method</u> (7.13)

$$\frac{u_{i,n+1} - u_{i,n-1}}{2\Delta t} = \frac{u_{i-1,n} - u_{i,n-1} - u_{i,n+1} + u_{i+1,n}}{\left(\Delta x\right)^2}$$

Method is an unconditionally stable, explicit method

9/8/2004

topic5: cn_df_adi

7

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

3 time levels are involved More difficult to formulate IC More computer storage is required

Error
$$O\left[\left(\Delta t\right)^2, \left(\Delta x\right)^2\right]$$

9/8/2004

topic5: cn_df_adi

Alternating-Direction Implicit (ADI) Method (7.14)

9/8/2004

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

Alternating-Direction Implicit (ADI) Method (7.14)

The unsteady state heat conduction in a slab is governed by the following

topic5: cn_df_adi

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Top and bottom surfaces are Insulated

Figure

BC are imposed on the 4 sides

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

Explicit Method

$$\frac{u_{i,j,n+1} - u_{i,j,n}}{\Delta t} = \delta_x^2 u_{i,j,n} + \delta_y^2 u_{i,j,n}$$

Stability Criterion:
$$\Delta t \leq \frac{1}{2\left[\left(\Delta x\right)^{-2} + \left(\Delta y\right)^{-2}\right]}$$

Implicit Method

$$\frac{u_{i,j,n+1} - u_{i,j,n}}{\Delta t} = \delta_x^2 u_{i,j,n+1} + \delta_y^2 u_{i,j,n+1}$$

Writing in full with $\Delta x = \Delta y$ yields

9/8/2004

topic5: en df adi

11

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

$$\begin{split} -\lambda u_{i-1,j,n+1} - \lambda u_{i,j-1,n+1} + & \left(1 + 4\lambda\right) u_{i,j,n+1} - \lambda u_{i,j+1,n+1} \\ & -\lambda u_{i+1,j,n+1} = u_{i,j,n} \end{split}$$

Scheme is stable for all values of λ

There are 5 unknowns per equation Gauss elimination for solution is more complicated System is not tri-diagonal

ADI Method

Let us now consider a parabolic PDE in two dimensions denoted by x and y

i.e.,
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

ADI uses two finite difference equations used in turn over successive time steps each of size $\Delta t/2$

The first equation is implicit only in the x-direction Second equation is implicit only in the y-direction

 $u_{i,j}^*$ is an intermediate value at the end of time step $\Delta t/2$

$$\frac{\text{Step 1}}{(\Delta t/2)} = \delta_x^2 u_{i,j}^* + \delta_y^2 u_{i,j,n}$$

Note that there is no time subscript for $u_{i,j}^*$

9/8/2004

topic5: cn df adi

13

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

$$\frac{\text{Step 2}}{\left(\Delta t/2\right)} = \delta_x^2 u_{i,j}^* + \delta_y^2 u_{i,j,n+1}$$

 $u_{i,j}^*$ values are solved for in the first step and

 $u_{i,j,n+1}$ values are solved for in the second step

Advantage is that the matrices in both steps are still tri-diagonal

Exercise: Write the equations in full using

$$\lambda = \frac{\Delta t}{(\Delta x)^2}$$
 and $\Delta x = \Delta y$

Can be shown that procedure is unconditionally stable

Discretization error 9/8/2004

$$O\left[\left(\Delta t\right)^2, \left(\Delta x\right)^2\right]$$
 topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

ADI can also be used for solving elliptic PDE's

ADI is not recommended for 3D problems

Example

An infinitely long bar has thermal diffusity

$$\alpha = \frac{k}{\rho c_p}$$

Square cross section of side 2a

IC: Temperature is uniform at T₀

Figure

BC: side surface temperature T₁

Compute temperature distribution T(x,y,t) inside the slab

9/8/2004

topic5: en df adi

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

Can write

$$\rho c_p \frac{\partial T}{\partial t} = k \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right]$$

Procedure

Non-dimensionalize the equations as follows

$$X = \frac{x}{a}$$

$$Y = \frac{y}{a}$$

$$\tau = \frac{\alpha t}{a^2}$$

$$X = \frac{x}{a},$$
 $Y = \frac{y}{a},$ $\tau = \frac{\alpha t}{a^2},$ $\theta = \frac{T - T_0}{T_1 - T_0}$

$$\frac{\partial \theta}{\partial \tau} = \frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2}$$

Observe: Problem has symmetry in geometry, IC and BC about both x and y axis

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

Need to solve only one quadrant

Due to symmetry there is no heat flux across X, Y axes (insulated boundaries)

IC: $\tau = 0$, $\theta = 0$ throughout the domain

BC:
$$\tau > 0$$
 $\theta = 1$ along sides X=1 and Y=1

$$\frac{\partial \theta}{\partial Y} = 0$$
 along X=0

figure

$$\frac{\partial \theta}{\partial X} = 0 \quad \text{along} \quad Y=0$$

9/8/2004

topic5: cn_df_adi

17

Treatment of Boundary Conditions

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

Types of BC (7.17)

Instead of u, $\frac{\partial u}{\partial n}$, $\frac{\partial u}{\partial s}$ or a combination may be specified at the boundary

Dirichlet condition: u=g

Neumann condition: $\alpha u_n + \beta u_s = g$

Mixed BC: $\alpha u_n + \beta u_s + \gamma u = g$

Where α , β , γ are constants and g is a known function. n and s denote, respectively, the normal and tangential derivatives.

9/8/2004

topic5: en df adi

19

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

For heat transfer at the straight boundary, x = 0, (see figure), the following can be written.

$$-u_n + au = g$$

For the case shown where the boundary is at x = 0, the above equation becomes

$$-u_x + au = g$$

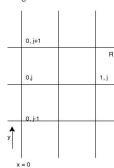


Figure 7.9 (Carnahan, Luther and Wilkes)

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

Consider the earlier parabolic PDE

$$u_t = u_{xx} + u_{yy}$$

 u_t and $u_{j,y}$ may be obtained at the boundary as before. Note that, in this case uo, j should be treated as an unknown and solved for.

An equation for i = 0 can be developed as follows.

9/8/2004

topic5: cn df adi

21

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

For \mathcal{U}_{xx} , use Taylor series as follows to expand about (0,j)

$$u_{1,j} = u_{0,j} + u_n \Delta x + u_{xx} \frac{(\Delta x)^2}{2!} + O[(\Delta x)^3]$$

$$u_{xx} = \frac{2}{(\Delta x)^2} [u_{1,j} - u_{o,j} - u_n \Delta x] + O[\Delta x]$$

Using the BC $u_n = \alpha u - g$ we get

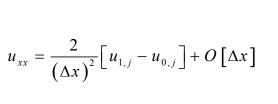
$$u_{xx} = \frac{2}{\left(\Delta x\right)^{2}} \left[u_{1,j} - \left(a\Delta x + 1 \right) u_{o,j} + g\Delta x \right] + O\left[\Delta x\right]$$

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

Write the corresponding equation for uxx for the heat conduction problem with an insulated boundary.



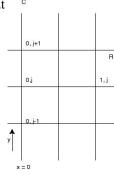


Figure 7.9 (Carnahan, Luther and Wilkes)

9/8/2004

topic5: cn df adi

23

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

Final implicit form of FD approximation (2D parabolic) at point (0,j)

$$\frac{2}{\left(\Delta x\right)^{2}}\left[u_{1,j}^{n+1}-\left(a\,\Delta x+1\right)u_{0,j}^{n+1}+g\,\Delta x\right]$$

$$+ \delta_{y}^{2} u_{0,j}^{n+1} = \frac{u_{0,j}^{n+1} - u_{0,j}^{n}}{\Delta t}$$

Example: 1D heat conduction problem with insulated end

BC at insulated end is
$$\frac{\partial u}{\partial x} = 0$$

Therefore from the above equation (set a=g=0)

$$u_{xx} = \frac{2}{(\Delta x)^2} [u_{1,j} - u_{0,j}] + O[\Delta x]$$

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

At point (i = 0) equation becomes

$$\frac{2}{(\Delta x)^{2}} \left[u_{1}^{n+1} - u_{0}^{n+1} \right] = \frac{u_{0}^{n+1} - u_{0}^{n}}{\Delta t}$$

$$u_{0}^{n+1} - u_{0}^{n} = 2\lambda \left[u_{1}^{n+1} - u_{0}^{n+1} \right]$$

$$\left(1 + 2\lambda \right) u_{0}^{n+1} - 2\lambda u_{1}^{n+1} = u_{0}^{n} \qquad (A)$$

From (A)
$$b_1 = 1 + 2\lambda$$
$$c_1 = -2\lambda$$
$$\alpha_1 = u_0^n$$

9/8/2004

topic5: cn_df_adi

25

Treatment of Non-linear Terms

9/8/2004

topic5: cn_df_adi

K. M. Isaac MAEEM Dept., UMR

Non -linear PDE's

The heat conduction equation of the previous sections is linear

Fluid flow equations often have non-linear terms

Example: x-Momentum equation of 2D steady, incompressible flow

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + \mu\frac{\partial^2 u}{\partial y^2}$$

Since *u* and *v* are the velocity components in x,y directions respectively the LHS terms are non-linear

Previous techniques can be adapted to solve non-linear equations

The basic approach is to linearize the equations

9/8/2004

topic5: cn df adi

27

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

In $u \frac{\partial u}{\partial x}$, if the coefficient u of $\frac{\partial u}{\partial x}$ is treated as a known quantity, then

the equation becomes linear

When unsteady equations are solved u at the beginning of the time step $\begin{pmatrix} u_{i,j}^n \end{pmatrix}$ can be used as the multiplier

For example, the first term can be discretized as

$$u_{i,j}^{n} \left(\frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{\Delta x} \right)$$

Would be the fully implicit form of the first term

when we use the forward difference form for ∂u

9/8/2004

topic5: cn_df_adi $\frac{}{\partial x}$

K. M. Isaac MAEEM Dept., UMR

Note that superscript n denotes quantities at time level t_n , which would be known from the previous solution step

Exercise: Write the same for the 2nd term

When steady state problems are solved using iterative techniques, values from the previous iteration step would be used as the multiplier u

Other non-linear forms

Consider
$$\frac{\partial}{\partial x} \left(D(c) \frac{\partial c}{\partial x} \right)$$
, the mass diffusion term

in mass transfer problems.

Note D(c), the diffusion coefficient, is a function of the dependent variable, c, the concentration

9/8/2004

topic5: en df adi

29

Computational Fluid Dynamics (AE/ME 339)

K. M. Isaac MAEEM Dept., UMR

If we use the model $D(c) = \alpha c + \beta$

the above term becomes

$$\frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) = D \left(c \right) \frac{\partial^2 c}{\partial x^2} + \alpha \left(\frac{\partial c}{\partial x} \right)^2$$

The first term on the RHS would be linearized as before using $D_{i,j}^n$ as the multiplier

To use the implicit procedure for the 2nd RHS term, it can be split as

$$\left(\frac{\partial c}{\partial x}\right) \times \left(\frac{\partial c}{\partial x}\right)$$

and treat the first half as a constant.

Note α and β are constants in the above discussion $_{0/8/2004}^{9/8/2004}$

University of Missouri-Rolla

Copyright 2002 Curators of University of Missouri

9/8/2004 topic5: cn_df_adi 31