

AE/ME 339

Computational Fluid Dynamics (CFD)
K. M. Isaac

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Governing equation summary
Continuity equation
Non-conservation form

$$
\begin{equation*}
\frac{D \rho}{D t}+\rho \bar{\nabla} \cdot \bar{V}=0 \tag{2.29}
\end{equation*}
$$

\qquad

Conservation form

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\bar{\nabla} \cdot(\rho \bar{V})=0 \tag{2.33}
\end{equation*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Governing equation summary
Momentum equation
Non-conservation form

$$
\rho \frac{D u}{D t}=-\frac{\partial p}{\partial x}+\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+\rho f_{x} \ldots \ldots . . .(2.50 a)
$$

$$
\begin{equation*}
\rho \frac{D v}{D t}=-\frac{\partial p}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}+\rho f_{y} . \tag{2.50b}
\end{equation*}
$$

$$
\rho \frac{D w}{D t}=-\frac{\partial p}{\partial z}+\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}+\rho f_{z} \ldots \ldots(2.50 c)
$$

9/21/2004

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
MAEEM Dept., UMR	

Governing equation summary
Momentum equation
conservation form

$$
\begin{aligned}
& \frac{\partial(\rho u)}{\partial t}+\bar{\nabla} \cdot(\rho u \bar{V})=-\frac{\partial p}{\partial x}+\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}+\rho f_{x} \ldots \ldots \ldots . .(2.56 a) \\
& \frac{\partial(\rho v)}{\partial t}+\bar{\nabla} \cdot(\rho v \bar{V})=-\frac{\partial p}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}+\rho f_{y} \ldots \ldots \ldots .(2.56 b) \\
& \frac{\partial(\rho w)}{\partial t}+\bar{\nabla} \cdot(\rho w \bar{V})=-\frac{\partial p}{\partial z}+\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}+\rho f_{z} \ldots \ldots \ldots . .(2.56 c)
\end{aligned}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Governing equation summary

Energy equation

non-conservation form

$$
\begin{align*}
& \rho \frac{D}{D t}\left(e+\frac{V^{2}}{2}\right)=\rho \dot{q}+\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right) \\
& -\frac{\partial(u p)}{\partial x}-\frac{\partial(v p)}{\partial y}-\frac{\partial(w p)}{\partial z}+\frac{\partial\left(u \tau_{x x}\right)}{\partial x}+\frac{\partial\left(u \tau_{y x}\right)}{\partial y}+\frac{\partial\left(u \tau_{z x}\right)}{\partial z} \\
& \frac{\partial\left(v \tau_{x y}\right)}{\partial x}+\frac{\partial\left(v \tau_{y y}\right)}{\partial y}+\frac{\partial\left(v \tau_{z y}\right)}{\partial z}+\frac{\partial\left(w \tau_{x x}\right)}{\partial x}+\frac{\partial\left(w \tau_{y z}\right)}{\partial y}+\frac{\partial\left(w \tau_{z z}\right)}{\partial z}+\rho \bar{f} \cdot \bar{V} \ldots . \tag{2.66}
\end{align*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Governing equation summary

Energy equation

conservation form

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\rho\left(e+\frac{V^{2}}{2}\right)\right]+\bar{\nabla} \cdot\left[\rho\left(e+\frac{V^{2}}{2}\right) \bar{V}\right]=\rho \dot{q}+\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right) \\
& +\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)-\frac{\partial(u p)}{\partial x}-\frac{\partial(v p)}{\partial y}-\frac{\partial(w p)}{\partial z} \\
& +\frac{\partial\left(u \tau_{x x}\right)}{\partial x}+\frac{\partial\left(u \tau_{y x}\right)}{\partial y}+\frac{\partial\left(u \tau_{z x}\right)}{\partial z}+\frac{\partial\left(v \tau_{x y}\right)}{\partial x}+\frac{\partial\left(v \tau_{y y}\right)}{\partial y} \\
& +\frac{\partial\left(v \tau_{z y}\right)}{\partial z}+\frac{\partial\left(w \tau_{x x}\right)}{\partial x}+\frac{\partial\left(w \tau_{y z}\right)}{\partial y}+\frac{\partial\left(w \tau_{z z}\right)}{\partial z}+\rho \bar{f} \cdot \bar{V} \ldots \ldots \ldots . .(2.81)
\end{aligned}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Physical Boundary Conditions

The above equations are very general. For example, they represent flow over an aircraft or flow in a hydraulic pump. To solve a specific problem much more information would be necessary. Some of them are listed below:

1. Boundary conditions (far field, solid boundary, etc)
2. Initial conditions (for unsteady problems)
3. Fluid medium (gas, liquid, non-Newtonian fluid, etc.)

BC specification depends on the type of flow we are interested in.
e. g., velocity boundary condition at the surface
"No slip condition" for viscous flow. All velocity
components at the surface are zero.
Zero normal velocity of inviscid flow.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Temperature BC at the wall.
Temperature, T_{w}, heat flux, $\dot{\mathcal{q}}_{w}$, etc. can be specified. Note

$$
\dot{q}_{w}=-k \frac{\partial T}{\partial n}
$$

If \dot{q}_{w} is a known quantity, an expression for wall temperature, T_{w} can be written in terms of known quantities.
In this case the wall temperature will be obtained as part of the solution.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Conservation form of the equations
All equations can be expressed in the same generic form fluxes can be written as
$\begin{array}{ll}\text { mass: } & \rho \bar{V} \\ \text { x-momentum: } & \rho u \bar{V} \\ \text { y-momentum: } & \rho v \bar{V} \\ \text { z-momentum: } & \rho w \bar{V} \\ \text { energy: } & \rho e \bar{V} \\ \text { total energy: } & \rho\left(e+\frac{V^{2}}{2}\right) \bar{V}\end{array}$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Conservation form contains divergence of these fluxes.
The set of equations can be written in the following vector form
$\frac{\partial \bar{U}}{\partial t}+\frac{\partial \bar{F}}{\partial x}+\frac{\partial \bar{G}}{\partial y}+\frac{\partial \bar{H}}{\partial z}=\bar{J}$.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

$$
\bar{F}=\left\{\begin{array}{l}
\rho u \tag{2.95}\\
\rho u^{2}+p-\tau_{x x} \\
\rho v u-\tau_{x y} \\
\rho w u-\tau_{x z} \\
\rho\left(e+\frac{V^{2}}{2}\right) u+p u-k \frac{\partial T}{\partial x}-u \tau_{x x}-v \tau_{x y}-w \tau_{x z}
\end{array}\right\} .
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
$\bar{G}=\left\{\begin{array}{l} \rho v \\ \rho u v-\tau_{y x} \\ \rho v^{2}+p-\tau_{y y} \\ \rho w v-\tau_{y z} \\ \rho\left(e+\frac{V^{2}}{2}\right) w+p v-k \frac{\partial T}{\partial y}-u \tau_{y x}-v \tau_{y y}-w \tau_{y z} \end{array}\right\}$	$\}(2.96)$
$\bar{H}=\left\{\begin{array}{l} \rho w \\ \rho u w-\tau_{z x} \\ \rho v w-\tau_{z y} \\ \rho w^{2}+p-\tau_{z z} \\ \rho\left(e+\frac{V^{2}}{2}\right) w+p w-k \frac{\partial T}{\partial z}-u \tau_{z x}-v \tau_{z y}-w \tau_{z z} \end{array}\right\}$	(2.97)

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
MAEEM Dept., UMR	

$\bar{J}=\left\{\begin{array}{l}0 \\ \rho f_{x} \\ \rho f_{y} \\ \rho f_{z} \\ \rho\left(u f_{x}+v f_{y}+w f_{z}\right)+\rho \dot{q}\end{array}\right\}$.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

In the above U is called the solution vector
F, G, H are called flux vectors
J is called the source term vector
The problem is thus formulated as an unsteady problem.
Steady state solutions can be obtained asymptotically.
Once the flux variables are known from the solution, the "primitive" variables, $\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{p}, \mathrm{e}$, etc. can be obtained from the flux variables.

Exercise write the vector form of the equations for inviscid flow (Euler equations).

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Note that the following equations can be used to determine T

$$
\begin{align*}
e & =e(p, \rho) \ldots \ldots \ldots \ldots \ldots \ldots .(2.112 a) \tag{2.112a}\\
e & =c_{v} T=\frac{R T}{\gamma-1}=\frac{R}{\gamma-1} \frac{p}{\rho R} \ldots \ldots \ldots .(2.112 b) \\
e & =\frac{1}{\gamma-1} \frac{p}{\rho}
\end{align*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Exercise: Write the corresponding equations for inviscid flow.
Observations:

1. Equations are coupled and non-linear
2. Conservation form contains divergence of some quantity
on the LHS. This form is sometimes known as divergence form.
3. Normal and shear stress terms are functions of velocity gradient.
4. We have six unknowns and five equations
(1 continuity +3 momentum +1 energy).
For incompressible flow ρ can be treated as a constant.
For compressible flow, the equation of state can be used as an additional equation for the solution.
5. The set of equations with viscosity included, is known as the Navier-Stokes equations.
6. The set of inviscid flow equations is also known as the Euler equations. These naming conventions are not strictly followed by everyone.

Program

 CompletedUniversity of Missouri-Rolla

Copyright 2002 Curators of University of Missouri

