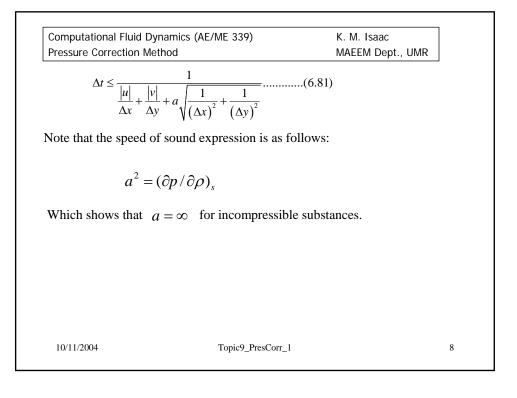
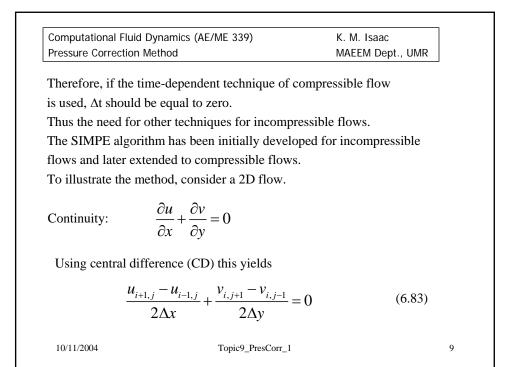
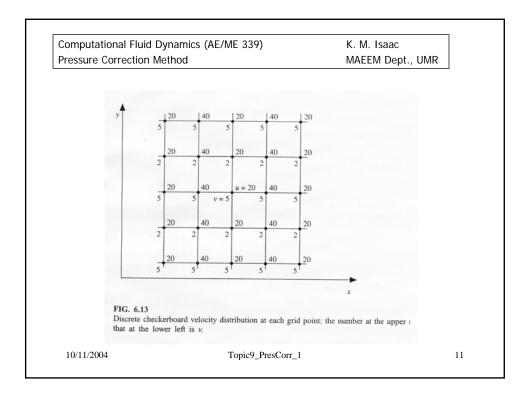


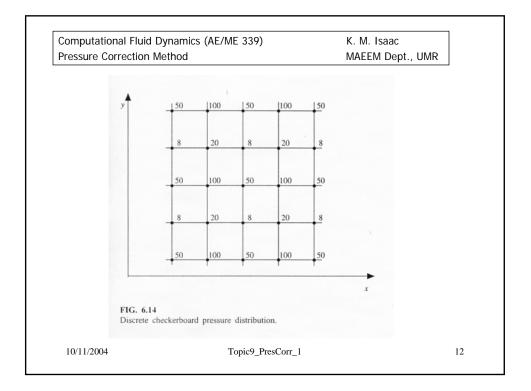

| Computational Fluid Dynamics                          | (AE/ME 339)          | K. M. Isaac                 |
|-------------------------------------------------------|----------------------|-----------------------------|
| Pressure Correction Method                            |                      | MAEEM Dept., UMR            |
| Pressure co                                           | orrection method     | <u>d (6.8)</u>              |
| Relaxation method is well k                           | nown for solving e   | lliptic equations.          |
| It is an iterative procedure.                         |                      |                             |
| Many flow problems are ell                            | iptic-parabolic in n | ature.                      |
| Pressure correction techniqu                          | ies have been deve   | loped for such flows.       |
| Patankar and Spalding deve                            | loped the SIMPLE     | (Semi-Implicit Method       |
| for <u>P</u> ressure- <u>L</u> inked <u>Eq</u> uation | ons) algorithm whic  | ch uses pressure correction |
| method.                                               |                      |                             |
|                                                       |                      |                             |
|                                                       |                      |                             |
|                                                       |                      |                             |
|                                                       |                      |                             |
|                                                       |                      |                             |
|                                                       |                      |                             |


|                          | al Fluid Dynamics (AE/ME 339)<br>rection Method                                                                                                                                                                                                                                                         | K. M. Isaac<br>MAEEM Dept., UMR                                                                                                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continu                  | ity Equation for incompressible flo                                                                                                                                                                                                                                                                     | ow: $\overline{\nabla} \cdot \overline{V} = 0$                                                                                                                                                            |
|                          | $\overline{\nabla} \cdot \overline{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$                                                                                                                                                              | (6.72)                                                                                                                                                                                                    |
| $\rho \frac{Du}{Dt} = 0$ | $-\frac{\partial p}{\partial x} + 2\mu \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial}{\partial y} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \mu \frac{\partial}{\partial z} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$ | $\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} + \rho f_x(6.69)$                                                                                                                          |
| $\rho \frac{Dv}{Dt} = 0$ | $-\frac{\partial p}{\partial y} + \mu \frac{\partial}{\partial x} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + 2\mu \frac{\partial^2 y}{\partial y^2} + \mu \frac{\partial}{\partial z} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$ | $\left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) + \rho f_y \dots \dots$ |
| $\rho \frac{Dw}{Dt} =$   | $-\frac{\partial p}{\partial z} + \mu \frac{\partial}{\partial x} \left( \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) + \mu \frac{\partial}{\partial y} \left( \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$                                          | $+2\mu\frac{\partial^2 w}{\partial z^2}+\rho f_z(6.71)$                                                                                                                                                   |
| 10/11/2004               | Topic9_PresCorr_1                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                         |


Computational Fluid Dynamics (AE/ME 339)K. M. Isaac  
MAEEM Dept., UMR
$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y} - \frac{\partial w}{\partial z}$$
Differentiate w.r.t. x $\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 w}{\partial z \partial x}$ Add $\frac{\partial^2 u}{\partial x^2}$ on both sides of the above equation and  
and multiply by  $\mu$  throughout to get the following $2\mu \frac{\partial^2 u}{\partial x^2} = \mu \frac{\partial^2 u}{\partial x^2} - \mu \frac{\partial^2 v}{\partial y \partial x} - \mu \frac{\partial^2 w}{\partial z \partial x}$ 1011201

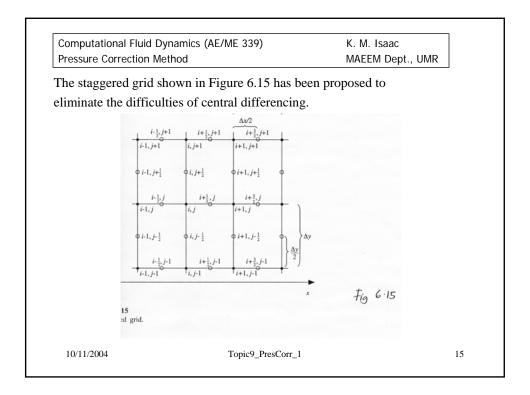
| Computational Fluid Dynamic | s (AE/ME 339)                      | K. M. Isaac               |
|-----------------------------|------------------------------------|---------------------------|
| Pressure Correction Method  |                                    | MAEEM Dept., UMR          |
|                             |                                    |                           |
| Substitute in Eq. 6.69 for  | the 2 <sup>nd</sup> term on the RI | HS using the above to get |
| the following after expand  | ding the terms and car             | celing terms (next slide) |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             |                                    |                           |
|                             | Topic9_PresCorr_1                  |                           |


| Computational Flui   | d Dynamics (AE/ME 339)                                                                                                | K. M. Isaac      |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|
| Pressure Correction  | Method                                                                                                                | MAEEM Dept., UMR |
| 1 0                  | the manipulations described in<br>ollowing form, where note that                                                      |                  |
| -                    | $\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ |                  |
|                      | $\overline{\nabla} \cdot \overline{V} = 0(6)$                                                                         | .77)             |
| $\rho \frac{Du}{Dt}$ | $= -\frac{\partial p}{\partial x} + \mu \nabla^2 u + \rho f_x$                                                        | (6.78)           |
| $\rho \frac{Dv}{Dt}$ | $\mathbf{v} = -\frac{\partial p}{\partial y} + \mu \nabla^2 v + \rho f_y \dots$                                       | (6.79)           |
| $\rho \frac{Dw}{Dt}$ | $\frac{\partial p}{\partial z} = -\frac{\partial p}{\partial z} + \mu \nabla^2 w + \rho f_z$                          | (6.80)           |
| 10/11/2004           | Topic9_PresCorr_1                                                                                                     | 6                |


| MAEEM Dept., UMR<br>s are u, v, w, and p. |
|-------------------------------------------|
| s are u. v. w. and p.                     |
| s are u. v. w. and p.                     |
| , ··, ···, <b>·····</b> p·                |
| the set.                                  |
| It and $\mu = \text{constant}$ .          |
| ntinuity and momentum                     |
| on-isothermal cases.                      |
| ble flows are not                         |
| ne nows are not                           |
| 1.'11 A. J                                |
| chill, Anderson and                       |
| t Transfer, 2 <sup>nd</sup> Edition,      |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |
|                                           |






| Computational Fluid Dynar                            | mics (AE/ME 339)         | K. M. Isaac                |
|------------------------------------------------------|--------------------------|----------------------------|
| Pressure Correction Metho                            | d                        | MAEEM Dept., UMR           |
| Substitution shows that to bage) satisfies Eq. 6.83. | the velocity pattern sho | own in Fig. 6.13 (see next |
| Yet a real flow field wou                            | uld not behave in such   | a physically unrealistic   |
| nanner.                                              |                          | a physically antealistic   |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |
|                                                      |                          |                            |





| Computational Fluid Dynamics (AE                                           | /ME 339)              | K. M. Isaac           |
|----------------------------------------------------------------------------|-----------------------|-----------------------|
| Pressure Correction Method                                                 |                       | MAEEM Dept., UMR      |
|                                                                            |                       |                       |
| Note the zig-zag distributions                                             | of both the u and     | v velocity components |
| in Figure 6.13 would satisfy the equation.                                 |                       | • •                   |
|                                                                            |                       |                       |
|                                                                            | ia an an in Eiseana ( | 14 Control difference |
| Zig-zag pressure distribution form of first derivative would distribution. |                       |                       |
|                                                                            |                       |                       |
|                                                                            |                       |                       |
|                                                                            |                       |                       |

| Computational Fluid Dynam                                     | nics (AE/ME 339)                                                       | K. M. Isaac                 |
|---------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------|
| Pressure Correction Method                                    |                                                                        | MAEEM Dept., UMR            |
| Now consider the pressu                                       | are gradient terms in th                                               | ne momentum equation        |
| $\frac{\partial p}{\partial x} = \frac{p_{i+1,j}}{2\Delta}$   | $p_{i-1,j}$                                                            |                             |
| $\partial x \qquad 2\Delta$                                   | x                                                                      |                             |
| $\partial p  p_{i,i+1} -$                                     | $p_{i, i-1}$                                                           |                             |
| $\frac{\partial p}{\partial y} = \frac{p_{i,j+1}}{2\Delta y}$ | y<br>y                                                                 |                             |
| These equations yield                                         | $\frac{\partial p}{\partial x} = 0, \frac{\partial p}{\partial y} = 0$ |                             |
| for the zig-zag pressure                                      | distribution of Fig. 6.                                                | 14.                         |
| Numerical solution will                                       | yield a uniform press                                                  | ure field, washing          |
| out the actual distribution                                   | n.                                                                     | -                           |
| Conclusion: Mere CD fo                                        | ormulation may not be                                                  | suitable for incompressible |
|                                                               |                                                                        | 1                           |



| Computational Fluid Dyna                                                       | mics (AE/ME 339)             | K. M. Isaac                     |
|--------------------------------------------------------------------------------|------------------------------|---------------------------------|
| Pressure Correction Metho                                                      | od                           | MAEEM Dept., UMR                |
| In this method, the pres                                                       | ssure are calculated at t    | he grid points                  |
| (i-1, j), (i, j), (i+1, j), (i                                                 | , j+1), (i, j-1), etc., sho  | wn as solid circles.            |
| The velocities are calcu                                                       | ulated at (i-1/2, j), (i+1/  | /2, j), (i, j+1/2), (i, j-1/2), |
| etc.                                                                           |                              |                                 |
| Because of using the st                                                        | aggered grid, oscillatio     | ons often wash out.             |
|                                                                                |                              |                                 |
|                                                                                |                              |                                 |
| Much of the benefits of<br>in applications, even th<br>The continuity equation | ough theoretical explanation |                                 |
| in applications, even th<br>The continuity equation                            | ough theoretical explanation | nations often fall short.       |

| Computational Fluid Dynamics (A | E/ME 339) K. N                | A. Isaac       |
|---------------------------------|-------------------------------|----------------|
| Pressure Correction Method      | MAE                           | EEM Dept., UMF |
| Adjacent velocity points are us | sed in the continuity equatio | n, also leadin |
| to less oscillations.           |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |
|                                 |                               |                |

|                              | mics (AE/ME 339)          | K. M. Isaac                       |
|------------------------------|---------------------------|-----------------------------------|
| Pressure Correction Metho    | bd                        | MAEEM Dept., UMR                  |
| Unde                         | rlying Rationale (6.8.3   | )                                 |
| ses an iterative procee      | lure and uses some inte   | eresting heuristic reasoning      |
| or the iteration procedu     | ure. The following step   | s are involved.                   |
| . Guess a pressure fiel      | d, p*.                    |                                   |
| . Solve momentum eq          | uations for u*, v*, w* u  | using p*.                         |
| . Use the velocity field     | from Step 2 to calcula    | ate a pressure correction p'.     |
| The corrected pressu         | re $p = p^* + p'$ .       |                                   |
| . Calculate velocity co      | prrections u', v' and w'  | using p.'                         |
| i.e., $u = u^* + u^*$ , etc. |                           |                                   |
| 1.0., u = u + u, etc.        | with a surd as a set Star | s 2-4 till the velocity field     |
| . Replace p* in Step 1       | with p, and repeat Step   | $25 2 \pm 111$ the velocity field |
| i.e. $u = u^* + u^*$ etc     |                           | os 2-4 till the velocity f        |

