

Computational Fluid Dyna	mics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR	
Predicted value, first or to the predictor step. It it denotes a column vec	der accurate. (Note that is different from its mea tor.)	the overbar here correspondent of the overbar here correspondent of the correspondence o	onds
$\overline{ ho}_i^{n+1}= ho_i^n+$	$\left(\frac{\partial \rho}{\partial t}\right)_{i}^{n} \Delta t(0)$	5.18)	
Similar equations can other variables in the of the equations.	be written for the predi U_bar vector (recall the	cted values of the matrix representation	
Note that the forward derivative	difference is used in Ec	(6.17) for the space	
10/20/2004	topic11_shocktube_prob	em	6

omputational Fluid Dynamics (AL/IVIL 559)	K. M. Isaac
	MAEEM Dept., UMR
Now use Eq. (6.13) to calculate the varia	ble at (n+1)
$\rho_i^{n+1} = \rho_i^n + \left(\frac{\partial \rho}{\partial t}\right)_{avg} \Delta t.$	(6.13)
Repeat the procedure to get the variable In Figure 6.2	at all the grid points shown
The same procedure can be used for all	the other variables of the
solution vector U_bar, using forward di	fference for the predictor
step and backward difference for the co	rrector step.
Because of using forward difference for	the predictor and backward
	bod can be shown to be 2^{nd} order
differnce for the corrector steps, the me	
accurate.	

Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Consists of a high separated by a dia	pressure chamber and a low phragm	pressure chamber
When the diaphra	gm is broken a wave pattern i	is established as shown
Figure shows the started reflecting	flow at a certain time t1, whe from the tube ends	n the waves haven't
10/20/2004	topic11_shocktube_proble	em 12

Computational Fluid Dynamic	cs (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Recall that, according to S	Stokes hypothesis λ =	$= -(2/3)\mu$
Also recall that		· · ·
$\tau_{xx} = \lambda \overline{\nabla} \cdot \overline{V} + 2\mu \frac{\partial u}{\partial x}$	$\frac{u}{x} = -\frac{2}{3}\mu \frac{\partial u}{\partial x} + 2\mu$	$\frac{\partial u}{\partial x} = \frac{4}{3} \mu \frac{\partial u}{\partial x}$
Therefore		
$F_2 = f_2$	$ou^2 + p - \frac{4}{3}\mu \frac{\partial u}{\partial x}$	
Also note		
	$F_1 = U_2$	
10/20/2004	topic 1. shocktube, proble	m 21

computational Fluid Dynam	nics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
we neglect external he herefore we can write	ating, the J-vector on the	RHS will be $= 0$.
$\partial \overline{U} = \partial \overline{F}$		
$\frac{\partial t}{\partial t} = -\frac{\partial x}{\partial x}$		
$\frac{\rho}{\partial t} = -\frac{\partial}{\partial x}(\rho u)$		
$\frac{\partial(\rho u)}{\partial t} = -\frac{\partial}{\partial x} \left[\rho u^2 + \right]$	$-p-\frac{4}{3}\mu\frac{\partial u}{\partial x}$	
$\frac{\partial}{\partial t} \left[\rho(e + \frac{u^2}{2}) \right] = -\frac{\partial}{\partial t}$	$\frac{\partial}{\partial x} \left[\rho u \left(e + \frac{u^2}{2} \right) + p u - b \right]$	$k\frac{\partial T}{\partial x} - \frac{4}{3}\mu u\frac{\partial u}{\partial x}\right]$

Computatic	nal Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
	$F_1 = U_2$ $F_2 = u(\rho u) + p - \frac{4}{3}\mu \frac{\partial u}{\partial x}$ $F_2 = \frac{U_2}{U_1}U_2 + \frac{R}{c_y}U_3 - \frac{R}{2c_y}\frac{U_2^2}{U_1} - \frac{1}{2c_y}\frac{U_2^2}{U_1}$	$-\frac{4}{3}\mu\frac{\partial u}{\partial x}$
	$F_{2} = \frac{R}{c_{v}}U_{3} + \frac{U_{2}^{2}}{U_{1}} \left[1 - \frac{R}{2c_{v}} \right] - \frac{4}{3}$ $F_{3} = U_{2} \left[\frac{c_{p}}{U_{1}c_{v}} \left(U_{3} - \frac{1}{2}\frac{U_{2}^{2}}{U_{1}} \right) + \frac{1}{2}\frac{U_{2}^{2}}{U_{1}} \right]$	$u\frac{\partial u}{\partial x}$ $\frac{1}{2}\frac{U_2^2}{U_1^2} - \frac{4}{3}\mu u\frac{\partial u}{\partial x}$
10/20/2004	topic11_shocktube_proble	em 28

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR
The last terms in the momentum and energy the viscous dissipation terms.	y equations that contain μ are
The shock tube flow can be solved without form). However, the resulting numerical sc oscillations at sharp discontinuities such as	including these terms (Euler heme will give rise to the shock.
In order to avoid these oscillations, terms si are introduced to smear out the discontinuit These terms are sometimes called the "artif	imilar to the viscous terms ies. icial viscosity term."
von Neumann and Richtmyer used a form of which for the MacCormack scheme can be	of the artificial viscosity term written as follows.

Computational Fluid I	Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Note that D is a porton be adjusted by cases and yet	sitive quantity. α is an emp losely monitoring the soluti avoid oscillations.	irical factor of $O(1)$ on. α should be as small
$\overline{U}_i^{n+1} = U$	$U_i^n - \frac{\Delta t}{\Delta x} (F_{i+1}^n - F_i^n) +$	
$\frac{\Delta t}{\Delta x} \Bigg[D^n_{_{i+}}$	$\frac{1}{2}(u_{i+1}^n-u_i^n)-D_{i-\frac{1}{2}}^n(u_i^n-u_i^n)$	$\left(u_{i-1}^{n} \right)$
$U_i^{n+1} = \frac{1}{2}$	$(U_i^n + \overline{U}_i^{n+1}) - \frac{\Delta t}{2\Delta x} (\overline{F}_i^{n+1})$	$(1 - \overline{F}_{i-1}^{n+1}) +$
$\frac{\Delta t}{\Delta x} \Bigg[\overline{D}_{i+\frac{1}{2}} \Bigg]$	$(\overline{u}_{i+1} - \overline{u}_i) - \overline{D}_{i-\frac{1}{2}}(\overline{u}_i - \overline{u}_{i-1})$	1)]
10/20/2004	topic11_shocktube_probl	em a

