

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAFEM Dept., UMR
Basic parameter of the shock tube is the diaphragm pressure ration p4/p1.	Driver section High pressure, p_1 Low pressure, p_2 (a) High pressure, p_1 Low pressure, p_2 (b) Displayingm time $r=0$ time $r=0$
The two chambers may be at different temperatures, T1 and T4, and may contain differentgases having different gas constants, R1 and R4.	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ \hline \end{array} \begin{array}{c} & & & & & \\ & & & & \\ \hline \end{array} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ \hline \end{array} \begin{array}{c} & & & & \\ & & & & \\ \hline \end{array} \begin{array}{c} & & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \hline \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array}{c} \end{array}{c} \end{array}{c} \begin{array}{c} & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \begin{array}{c} & & \\ & & & \\ \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c}$
At the instant when the diaphragm is broken, the pressure distribution is a step function. It then splits into a shock and an expansion fan as shown in the figure.	How
November 4, 2004 topic18 shock tub	e flow 2.

Computational Fluid Dynamics (AE/ME 3	39) K. M. Isaac
	MAEEM Dept., UMR
The shock propagates into the expan	nsion chamber with speed Vshock
An expansion wave propagates into speed a4 at its front.	the high pressure chamber with
Condition of the shock traversed by	the shock is denoted by 2 and
that traversed by the expansion wav	e is denoted by 3.
The interface between Regions 2 an	d 3 is called the <i>contact surface</i> .
The interface between Regions 2 an It marks the boundary between the f separated by the diaphragm. The co of a piston driving into the low press front ahead of it.	d 3 is called the <i>contact surface</i> . fluids which were originally ntact surface is like the front sure region creating a shock
The interface between Regions 2 an It marks the boundary between the f separated by the diaphragm. The co of a piston driving into the low pres front ahead of it.	d 3 is called the <i>contact surface</i> . fluids which were originally ntact surface is like the front sure region creating a shock
The interface between Regions 2 an It marks the boundary between the f separated by the diaphragm. The co of a piston driving into the low pres front ahead of it.	d 3 is called the <i>contact surface</i> . fluids which were originally ntact surface is like the front sure region creating a shock
The interface between Regions 2 an It marks the boundary between the f separated by the diaphragm. The co of a piston driving into the low pres front ahead of it.	d 3 is called the <i>contact surface</i> . fluids which were originally ntact surface is like the front sure region creating a shock

 $\label{eq:computational Fluid Dynamics (AE/ME 339)} K. M. Isaac MAEEM Dept., UMR \label{eq:computational relations apply on either side of the contact surface and <math display="block">p_2 = p_3 \label{eq:computational relation} \mu_2 = u_3 \label{eq:computational relation} \label{eq:computation} \label{eq:computation} \mu_2 = \mu_3 \label{eq:computation} \label{eq:c$

