

Computational Fluid Dynamics (A	/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
Grid Ge	eneration (Chapt	ter 5)
Quality of the CFD solution is grid.	strongly depende	ent on the quality of the
Why is grid generation necessate explain.	ary? Figure 5.1(no	ext slide) can be used to
Note that the standard finite di spaced rectangular grid.	fference methods	require a uniformly
If a rectangular grid is used, fe	w grid points fall	on the surface.
Flow close to the surface being	g very important i	in terms of forces ,
heat transfer, etc., a rectangui regions.	lar grid will give	poor results in such
Also uniform grid spacing ofte	en does not yield	accurate solutions.
Typically, the grid will be clos	ely spaced in bou	indary layers.

Computational Fluid Dyr	namics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Note that in the physic is uniformly spaced.	al space the cells are not	t rectangular and the grid
There is a one-to-one of computational space. I a point in the physical	correspondence between Each point in the comput space.	the physical space and the tational space represents
The procedure is as fo	llows:	
1. Establish the necess space and the con	ary transformation relati	ions between the physical
2. Transform the gove the computationa	rning equations and the l l space.	boundary conditions into
3. Solve the equations spaced rectangula	s in the computational sp r grid.	pace using the uniformly
	ansformation to represen	nt the flow properties
4. Perform a reverse tr in the physica	al space.	

Computational Fluid Dynamics	s (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Let $x = x(\xi, \eta)$, $y = y(\xi, \eta)$ hen we can write	η) and $u = u(x, y)$.	
$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}$	dy	(5.19)
$\frac{\partial u}{\partial \xi} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \xi} + \frac{\partial u}{\partial \xi}$	<u>μ ду</u> y дξ	(5.20)
$\frac{\partial u}{\partial \eta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \eta} + \frac{\partial u}{\partial y}$	$\frac{u}{y}\frac{\partial y}{\partial \eta}$	(5.21)
Eqs. (5.21) and (5.22) are	two equations for the	e two unknown derivative
October 27, 2004	topic13_grid_generation	

- i1Cramer's Rule: The solution vector x of a system of linear equations Ax = c with the
regular matrix of coefficients A is uniquely determined by:
 $x_i = Det A_i/Det A.$
Where A_i denotes the matrix obtained from the coefficient matrix A by replacing the ith
column by the vector of constants c.
Not efficient for systems with more than 3 equations.
isaac, 11/1/2003
- i3 isaac, 10/27/2004

i2 Replace matrix elements by the determinants of the complementary matrices, following the alternating sign rule and transpose. And divide by the determinant of the original matrix. isaac, 10/27/2004

