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Burger’s Equation
(Ref. Tannehill, Anderson and Pletcher, Computational Fluid
Mechanics and Heat Transfer, Sect, 4.4, 1997)
It is a model equation used to test finite difference techniques
Inviscid and viscous forms can be used
Has a time dependent term, non-linear term similar to the 
convection term, and a viscous dissipation term
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Equation (1) is parabolic when the viscous dissipation term is included.
When the RHS term = 0, the equation is hyperbolic, which gives the
following inviscid form.
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Equation 2 can be thought of as the non-linear wave equation, where
each point on the wave can propagate with a different speed leading
to the formation of shock waves. 
Shock formation is a non-linear phenomenon.
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time-dependent convection
 term term

Linear wave equation
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Governs propagation of acoustic waves (linearized shock waves)
where a is the constant wave propagation speed (speed of
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Figure 1. Traveling discontinuity proble for Burger's equation

Traveling Discontinuity (shock propagation)
Problem for Burger’s Equation.
Consider the initial data shown below
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1 2

It can be shown that the discontinuity travels 
with the speed (Tannehill et al., 1997)

               =                     (6)
2

See Figure 1 (previous slide).
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Consider a different initial data u(x,0) shown in Figure 2.
The solution will show centered expansion
The characteristic equation is given by
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Characteristics for Centered Expansion

Figure 1.
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Figure 2. Solution at t = 0 and t > 0
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Figure 1 shows the characteristic diagram 
plotted in the (x, t) space.
Bounded by the x = 0 (vertical) line 
and the characteristic denoted by the 
dashed line.
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Characteristics for Centered Expansion
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Graph showing solution at t = 0 and t > 0
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Solution can be written as
0      0

1    0    (recall: )
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The initial distribution of u results in a centered expansion where
the width of the expansion grows linearly with time.

The above solutions can now be used to evaluate finite difference
algorithms.
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1. Write Taylor series for u   about   u  and  u   about   u  

2. Subtract the second from the first

3. Write Taylor Series for u   and substitute in Eq. (10)

4. Replace u   with  -au
5. Us

n

j

+

xe central difference for u   on the RHS
6. Drop third order terms

Beam and Warming method
Outline
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          Beam and Warming, 1976
Let us consider the following equation

( ) 0                               (3)

where   ( )

Rewrite as 0          (4)

where  

Beam-Warming Method ( )
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Equation (3) could represent a vector

in which case    is the Jacobian matrix  i
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Consider the the following two Taylor series expansions
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( )  can be substituted in Eq. (10) using the following

Taylor series expansion
( ) ( ) ( ) ...        (11 )

Eq. (10) becomes
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Which reduces to
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Now we substitute the wave equation 
to get the following
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2

and now replace the  terms by 2nd order central
differences
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The method is 2nd order accurate (ε = O[(∆t)2,(∆x)2]) and 
unconditionally stable for all time steps. 
A tridiagonal system must be solved for each time step.
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1. Write Taylor series for u   about   u  and  u   about   u  

2. Subtract the second from the first

3. Write Taylor Series for u   and substitute in Eq. (10)

4. Replace u   with  -au
5. Us

n

j

+

xe central difference for u   on the RHS
6. Drop third order terms

Summary
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The Beam-Warming method can now be applied to the inviscid
Burger’s equation
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Substituting in Eq. (14) using Eq. (3) gives

     (15)
2

The above is a non-linear problem since   ( ).
Linearization or iteration is therefore necessary
B
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eam and Warming (1976) suggested the following
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Replacing the x-derivatives using 2nd order CD
would yield the following
1 t 1 t-
4 x 4 x

t 1 t 1 t         -   (18)
x 2 4 x 4 x

The Jacobian A
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∆ ∆
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−∆ ∆ ∆
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 has a single element for the Burger's 
equation. 
Eq. (18) represents linear tridiagonal system.
Solution by Thomas algorithm is feasible.  
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( )2 1 1 2

Beam and Warming suggests the following
explicit artificial viscosity term 

       D = -     (19)
8

Recommended values of  lie in the range
                         0 1

n n n n n
j j j j ju u u u uω

ω
ω

+ + − −+ + + +

≤ ≤



12

11/30/2004 topic20_Burger's_Equation 23

Computational Fluid Dynamics (AE/ME 339)                      K. M. Isaac
MAEEM Dept., UMR

1 1
1 1 1

                                 Delta Form
Sometimes it is better to write the equation for
change in the variable from time level n to (n+1).
Eq. (18) then becomes
1 t 1 t-
4 x 4 x

n n n
j j j jA u u A+ +
− − +
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∆ ∆
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The delta form reduces the number of arithmatic 
operations since the RHS has only one term.
Also round-off error will be smaller in this case.
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Some Examples
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Solution of Burger’s equation

Use MacCormack’s method to solve inviscid Burger’s equation using
a mesh with 51 points in the x-direction. Solve the equation for a 
right propagating discontinuity with u = 1 at the first 11 nodes
and u = 0 at the rest of the nodes. 
Use Courant number = 1.

Solution 
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MacCormack's method
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