Home Work Problem 1

Consider flow in a constant area pipe with heat transfer and friction (Ref: Hill and Peterson, Mechanics and Thermodynamics of Propulsion, Addison-Wesley). The equation may be solved numerically by using a suitable procedure for the solution of ordinary differential equation, such as the Runge-Kutta algorithm. Numerically solve the equations for air for the following conditions: tube diameter = 30 cm., tube length = 3 m. Inlet: M = 0.25. Wall heat transfer, q = 600 kJ/kg. Assume a constant value for c_f given below. Calculate the following conditions at the pipe exit: M, T, T_0 , p, p_0 .

- i) $T_{01} = 1000 \text{ K}, p_{01} = 1.5 \text{ MPa}, c_f = 0.0.$
- ii) $T_{01} = 300K$, $p_{01} = 1$ atm (101325 N/m^2) , $c_f = 0.01$