Home Work Problem 1

Consider flow in a constant area pipe with heat transfer and friction (Ref: Hill and Peterson, Mechanics and Thermodynamics of Propulsion, Addison-Wesley).
The equation may be solved numerically by using a suitable procedure for the solution of ordinary differential equation, such as the Runge-Kutta algorithm.
Numerically solve the equations for air for the following conditions: tube diameter $=30$ cm ., tube length $=3 \mathrm{~m}$. Inlet: $\mathrm{M}=0.25$. Wall heat transfer, $\mathrm{q}=600 \mathrm{~kJ} / \mathrm{kg}$. Assume a constant value for c_{f} given below. Calculate the following conditions at the pipe exit: M , $\mathrm{T}, \mathrm{T}_{0}, \mathrm{p}, \mathrm{p}_{0}$.
i) $\quad \mathrm{T}_{01}=1000 \mathrm{~K}, \mathrm{p}_{01}=1.5 \mathrm{MPa}, \mathrm{c}_{\mathrm{f}}=0.0$.
ii) $\quad \mathrm{T}_{01}=300 \mathrm{~K}, \mathrm{p}_{01}=1 \mathrm{~atm}\left(101325 \mathrm{~N} / \mathrm{m}^{2}\right), \mathrm{c}_{\mathrm{f}}=0.01$

