Computational Fluid Dynamics (AE/ME 339) MAEEM Dept., UMR, Fall 2001

Home Work Problem 5

A circular steel rod of length $\mathrm{L}=30 \mathrm{~cm}$, insulated on the sides, is initially at a temperature of $0^{\circ} \mathrm{C}$. Suddenly the two ends are raised to a temperature of $50^{\circ} \mathrm{C}$ and maintained at that temperature. Use the implicit method discussed in class and calculate the temperature distribution along the length of the rod at following times.
i) $\quad 0.05 \mathrm{~s}$
ii) 2 s
iii) $\quad 50 \mathrm{~s}$
iv) $\quad 100 \mathrm{~s}$

1. Plot your results in non-dimensional form using $\theta=\left(\mathrm{T}-\mathrm{T}_{\mathrm{o}}\right) /\left(\mathrm{T}_{1}-\mathrm{T}_{\mathrm{o}}\right)$, where T_{o} is the initial temperature and T_{1} is the temperature at the two ends for $\mathrm{t}>0$.
2. Form a table of values similar to the one given in Example 7.2 (handout)

Use Example 7.2 in Carnahan, Luther and Wilkes for plotting and preparing your write up. You will need to refer to a heat transfer book to obtain the property values of steel. That is also part of the home work.

