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The basic idea behind grid generation is the creation of the transformation
laws between the physical space and the computational space.

These laws are known as the metrics of the transformation.
We have already performed a simple grid generation without realizing it
for the flow over aheated wall when we used the t, &, n coordinates for the

numerical scheme. Thiswas simply atransformation from one rectangular
domain to another rectangular domain.
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Grid Generation (Chapter 5)

Quality of the CFD solution is strongly dependent on the quality of the
grid.

Why is grid generation necessary? Figure 5.1(next slide)can be used to
explain.

Note that the standard finite difference methods require a uniformly
spaced rectangular grid.

If arectangular grid is used, few grid points fall on the surface.

Flow close to the surface being very important in terms of forces,

heat transfer, etc., arectangular grid will give poor results in such
regions.

Also uniform grid spacing often does not yield accurate solutions.

Typically, the grid will be closely spaced in boundary layers.
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FIG. 5.1
An airfoil in a purely rectangular grid.
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Figure shows a physical flow
domain that surrounds the body
and the corresponding rectangular
flow domain.

Note that if the airfoil is cut and
the surface straightened out, it
would form the &-axis.
Similarly, the outer boundary
would become the top boundary
of the computational domain.
The left and right boundaries of

the computational domainwould |

represent the cut surface.
Note the locations of points a, b,

l
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Note that in the physical space the cells are not rectangular and the grid
Isuniformly spaced.

There is a one-to-one correspondence between the physical space and the
computational space. Each point in the computational space represents

a point in the physical space.

The procedureis asfollows:

1. Establish the necessary transformation relations between the physical
space and the computational space

2. Transform the governing equations and the boundary conditions into
the computational space.

3. Solve the equations in the computational space using the uniformly
spaced rectangular grid.

4. Perform areverse transformation to represent the flow properties

in the physical space.
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General Transformation Relations

Consider atwo-dimensional unsteady flow with independent variables

t, X,y.

The variables in the computational domain are represented by T, &, n, and
The relations between the two sets of variables can be represented as

follows.

z':z'(t) ........................... (5.1c)
a1 C YA § I (5.1a)
=1 Y1) (5.1b)
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The derivatives appearing in the governing equations must be transformed
using the chain rule of differentiation.

3,556 @)L,

The subscripts are used to emphasi ze significance of the partial derivatives
and they will not be included in the equations that follow.
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(%){;](gij{;]@zj ........................... 52)
(%j@ij (anj@@ ................... (5.3)

CREICRC RO —
(;j (agj(%j (anl(a@?}(gj@_ﬂ ................. (5.5)
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Thefirst derivatives in the governing equations can be transformed using
Egs. (5.2), (5.3) and (5.5).

The coefficients of the transformed derivatives such as the ones given
below are known metrics.

dg 0g 0n 07

OX oy OX oy

Similarly, chain rule should be used to transform higher order derivatives.

Example:

e R R )
ey S T— 59
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Metrics and Jacobian (5.3)
In CFD the metric terms are not often available as analytical expressions.

Instead they are often represented numerically.
Thefollowing inverse transformation is often more convenient to use than

the original transformation

X=X(E,10,T) e, (5.183)
Y=Y(E 7,7 ) e, (5.18b)
S | ) (5.18c)
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Letx=X(§, ), y=Yy(& n)andu=u(,y).
then we can write

i = 2Lt Xy (5.19)
OX oy

ou _ ou OX au oy 521

877 aX 877 ay 877 ............................ .

ou  du Ox au oy 520

0F X 0F  dy oc

Egs. (5.21) and (5.22) are two equations for the two unknown derivatives.
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Solving for the partial derivate

. . ou
w. r. t x gives, using Cramer’s o oc
rule A
au_lon o (5.22)
X [ox | .
o O
x %y
on 0n
ox oy
Define the Jacobian J as Jza(x’y)z ] T (5.22a)
o(&m) |ox oy
on  0n
Eq. (5.22) can now be Z—;’( = %KS—EJK%}@—EJ [%ﬂ ............................. (5.23a)

written in terms of J.
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Similarly we can write the derivativew.r.ty as

Y AN I s2m

and we can define the following

g%{@( g}v?](;nj(;{ﬂ ............................. (5.24a)
%:%K;Uj@j_@(gm ............................. (5.240)
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The above eguations can be easily extended to three space dimensions

(x,y an z).
The above equations can also be obtained formally as follows
E=E (X Y) e, (5.25a)
og . . 05
dé=—20X+—20Y..coceiieeiereereecreenen, 5.26a
= I+ oy y (5.26a)
n= 77(X, y) ........................ (5.25b)
dn =Tt 2Ly (5.26b)
OX
0z o
{dﬂ | oo {dx} ....................................... (5.27)
dn] |on on|ldy
| OX 0y |
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Similarly
D (%7} IO (5.28a)
y = y(§,77) ................................... (5.28Db)
OX OX
d —£d§+%dn ................................. (529&)
_ Ny
V=3¢ dé + o o 17N (5.290)
ox ox
[dx} _|% on {dﬂ ....................................... (5.30)
dy| |9y ox | dn
| 05 0n |
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Eq. (5.30) can be solved for d, dn

OX |

X OX
{dﬂ: 0 om {dx} ....................................... (5.31)
dn] |y ox| |dy

oG

on_

Consider the conservation form 2D flow with no source term

o oF oG
+—+—=
oo ox oy
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oX oy _ o0& Onm (5.32)
on on| |y o
| OX oy | |0& On.

Using results from matrix algebrafor inversion of matrices, RHS

can be written asfollows

[ oy OX |
oan  on
05 G| |y
X ooy L% O (5.33)
on on|  |Ox X
ox oy | |8E on
oy oy
& o
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Since the determinant of a matrix and its transpose are the same we can
write

OX OX| |oXx oYy
o 0n| |06 0Og
oy oy| |ox oy
o¢ on| |on dn

N IS (5.34)

Substitute Eq. (5.34) into Eg. (5.33)

88 O] oy X
X oy | 1| on on
on on| J| oy OX
| ox oy 0 ¢
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Comparing corresponding elements of the two matrices on the LHS and

the RHS gives the following relations.

2% :lﬂ .............................. (5.36a)
ox Jon

on_ Loy (5.36b)
ox 108

L (5.360)
oy Jdon

o X (5.36d)
oy 30
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Consider the conservation form 2D flow with no source term

oU oF oG
+—+—=
ot ox oy
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The above eguation can be transformed to (see section 5.4)

oV, O, G, _

R (5.38)
ot of  on

Wherethe U1, F1, and Gl are asfollows

U, =JdU., (5.48a)

F=JF 8—5 + JGa—65 ................................ (5.480)
X oy

G =JF 8_77+ JG@—77 ............................ (5.48c)
X oy
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Algebraic Methods

Known functions are used to map irregular physical domain into
rectangular computational domains.
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Example: Grid stretching
may be necessary for some
problems such as flow with
boundary layers.

Let us consider the trans-
formation:

U

Ar
¥

|

I
Y

y — exp(n) o 1 """ (55:Ib) E'-Ir-ll-:n.:l-:m' gnd sreiching. (@) Physical plane; () compuiational plane.
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Thefollowing relation (Eg. 5.52) hold between increments Ay and An

ﬂ_ g’

dry

dy =€’dn

AY = €TAN i, (5.52)
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Therefore as 1) increases, Ay increases exponentially.
Thus we can choose An constant and still have an exponentia stretching
of the grid in the y-direction.

oApu) o) _ g ... (553

o(x)  o(y)
o(pu) 05 | o(pu) 017, (V) 05 A(W) O _ g mgy

0 Ox an ox  oE 8y on oy

%6 _4 % _qg 91 _j on__1 .. (5.55)
OX B, OX oy 1+y
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Substitute in Eqg. (5.54) to get

opu) 1 o) _,

....... (5.56)
o0& 1+y On
o(pu) 1 o(pv) _ |, (5.57)
P .
o pu) | o(pv) _ o
o0& on

Eqg. (5.57) isthe continuity equation in the computational domain.
Thus we have transformed the continuity equation from the physical
space to the computational space.

December 21, 2001 topicl3_grid_generation




Computational Fluid Dynamics (AE/ME 339) K. M. Isaac
MAEEM Dept., UMR

The metrics carry the specifics of a particular transformation.

Boundary Fitted Coordinate System (5.7)

Here we consider the flow through a divergent duct as given in Figure 5.6

(next dlide). deisthe curved upper wall and fg is the centerline.
Let ys = f(x) be the function that represents the upper wall.

The following transformation will giverise to arectangular grid.

E=x (5.65)
n=Vylys (5.66)

To test thischoose ys = 1.5x and let X vary from 1 to 5.
Atx=1E=1 nmax=ymax/ys=1,and x =5, £ =5, nmax = ymax/ys = 1.

Thustheirregular domain istransformed into into arectangular domain.
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Consider a second case where the oA

Nozzlewall is curved
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FIG, 5.6

A simple boundary-fined coordinate system. (4} Physical plane; (h) computional plane.
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Vo =X 1<x<2

E=X

Ymax X
%8 1%
OX oy
@:_213:_22:_22
OX X X &
onp_ 1 1

oy X &
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The above formulation is analytic

fx , é:y »T]x» 7]y Could aso be obtained using central differencing.

The Jacobian is defined as

OF &
3296n) _|ox oy

o(x,y) [9n On
oX oy

= gxny _gynx
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Consider apoint in the domain wherewehave Let&=1.751n=0.75
Let us calculate n_x analytically and numerically.

At this point:
Xx=1.75
y =1x* =0.75x (1.75)* = 2.29688
no=—21=2x22_ 085715
E 1.75
X. =1.0,y. =0
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We can also numerically calculate the derivatives using CD

Ay  3.0625-1.53125
An 2x0.25

| =37 =Xy, —y.x, =1x3.0625-0x 0= 3.0625
E=15y=y n=225x0.75=1.6875
E=2:y=Y .n=4x0.75=3.0

= 3.0625

Yy

y. - Ay _30-16875_,,
AE 2.0-15
po=—Je o252 _ 485714

| 3.0625
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