

AE/ME 339

Computational Fluid Dynamics (CFD)
K. M. Isaac

Professor of Aerospace
Engineering

Flow Over a Cylinder

The transformation from (x, y) to polar coordinates (r, θ) will give boundaryfitted coordinates. (Recall $r=R$ (constant) is the cylinder surface.

Here the domain is between $r=R$ and $r=$ infinity.

Computationally, the outer boundary needs to be finite, say $r=r 1$, where the far field (free-stream) conditions can be applied.

We can also use the transformation $\sigma=1 / \mathrm{r}$. With this tranformation, $\sigma=1 / \mathrm{R}$ represents the cylinder surface and $\sigma=0$ represents conditions at infinity.
In the new (σ, θ) system, the computational space lies between $\sigma=0$ (far field) and $1 / \mathrm{R}$ (surface).

First consider the polar coordinates. The relationship between the two systems is as follows:

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

Transformation metrics:

These transformations can be checked by applying them to Laplace's equation, which in polar coordinates is given by

$$
\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}=0 . .
$$

$$
\begin{aligned}
& \frac{\partial x}{\partial r}=\cos (\theta), \frac{\partial^{2} x}{\partial r^{2}}=0 \\
& \frac{\partial x}{\partial \theta}=-r \sin (\theta), \frac{\partial^{2} x}{\partial \theta^{2}}=-r \cos (\theta) \\
& \frac{\partial y}{\partial r}=\sin (\theta), \frac{\partial^{2} y}{\partial r^{2}}=0 \\
& \frac{\partial y}{\partial \theta}=r \cos (\theta), \frac{\partial^{2} y}{\partial \theta^{2}}=-r \sin (\theta)
\end{aligned}
$$

Computational Fluid Dynamics (AE/ME 339) K. M. Isaac

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial r^{2}}=\left(\frac{\partial^{2} x}{\partial r^{2}}\right) \frac{\partial}{\partial x}+\left(\frac{\partial^{2} y}{\partial r^{2}}\right) \frac{\partial}{\partial y}+\left(\frac{\partial x}{\partial r}\right)^{2} \frac{\partial^{2}}{\partial x^{2}}+ \\
& \left(\frac{\partial y}{\partial r}\right)^{2} \frac{\partial^{2}}{\partial y^{2}}+2\left(\frac{\partial x}{\partial r}\right)\left(\frac{\partial y}{\partial r}\right) \frac{\partial^{2}}{\partial x \partial y}
\end{aligned}
$$

Substituting for the metrics give the following

Substituting for the metrics give the following

$$
\frac{\partial^{2}}{\partial r^{2}}=\underbrace{\left(\frac{\partial^{2} x}{\partial r^{2}}\right)}_{0} \frac{\partial}{\partial x}+\underbrace{\left(\frac{\partial y}{\partial r}\right)^{2}}_{0} \frac{\partial}{\partial y}+\underbrace{\left(\frac{\partial x}{\partial r}\right)^{2}}_{\cos ^{2}(\theta)} \frac{\partial^{2}}{\partial x^{2}}+
$$

$$
\underbrace{\left(\frac{\partial y}{\partial r}\right)^{2}}_{\sin ^{2}(\theta)} \frac{\partial^{2}}{\partial y^{2}}+\underbrace{2\left(\frac{\partial x}{\partial r}\right)}_{\cos (\theta)} \underbrace{\left(\frac{\partial y}{\partial r}\right)}_{\sin (\theta)} \frac{\partial^{2}}{\partial x \partial y}
$$

Similarly, get expressions for the other terms

$$
\frac{\partial^{2}}{\partial \theta^{2}}, \frac{\partial}{\partial r}
$$

And substitute in Laplace's equation in polar coordinates to transoform The equations to cartesian coordinates.

$$
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0 \ldots \ldots \text { (2) }
$$

For this problem the transformation $\sigma=1 / \mathrm{r}$ can be used to transform The original equation into in terms of σ. Also since the flow is symmetric about $\theta=0$ line, we need to solve Only one half of the flow domain.

The governing equation can now be written in terms of σ as follows

$$
\begin{aligned}
& \frac{\partial}{\partial r}=\frac{\partial \sigma}{\partial r} \frac{\partial}{\partial \sigma}=-\sigma^{2} \frac{\partial}{\partial \sigma} \\
& \frac{\partial^{2}}{\partial r^{2}}=\frac{\partial}{\partial r}\left(\frac{\partial}{\partial r}\right)=\frac{\partial}{\partial r}\left(-\sigma^{2} \frac{\partial}{\partial \sigma}\right)= \\
& -\sigma^{2} \frac{\partial}{\partial \sigma}\left(-\sigma^{2} \frac{\partial}{\partial \sigma}\right)=\sigma^{4} \frac{\partial^{2}}{\partial \sigma^{2}}+2 \sigma^{3} \frac{\partial}{\partial \sigma}
\end{aligned}
$$

Using the above relations in Laplaces equation gives

$$
\sigma^{2} \frac{\partial^{2} \varphi}{\partial \sigma^{2}}+\sigma \frac{\partial \varphi}{\partial \sigma}+\frac{\partial^{2} \varphi}{\partial \theta^{2}}=0
$$

The above equation needs to be solved on the rectangular grid shown In the figure.
Before starting the solution, the boundary conditions also must be Transformed.

$$
\begin{array}{ll}
\operatorname{At} \mathrm{r}=\mathrm{R}: \quad & r=R: \\
& \frac{\partial \phi}{\partial r}=u_{r}=0 \\
& \left.\frac{\partial \phi}{\partial r}\right|_{r=R}=-\left.\sigma^{2} \frac{\partial \phi}{\partial \sigma}\right|_{\sigma=(1 / R)}=0 \\
& \left.\therefore \frac{\partial \phi}{\partial \sigma}\right|_{\sigma=(1 / R)}=0 \\
& r \rightarrow \infty: \\
& \phi=U_{\infty} r \cos (\theta)
\end{array}
$$

$$
\begin{aligned}
& r \rightarrow \infty: \frac{\partial \phi}{\partial r}=-\sigma^{2} \frac{\partial \phi}{\partial \sigma}=U_{\infty} \cos (\theta) \\
& \text { or }: \phi=\frac{U_{\infty}}{\sigma} \cos (\theta)
\end{aligned}
$$

The exact far-field BC at ∞ cannot be appliedin this case. An approximate specification is to choose $\sigma=1 / \mathrm{I}$ for the far-filed, where I is the number of intervals in the radial direction.

Along the line of symmetry θ-component of velocity $\frac{\partial \phi}{\partial \theta}=0$

$$
\frac{1}{r} \frac{\partial \phi}{\partial \theta}=0 \quad \text { i.e., } \frac{\partial \phi}{\partial \theta}=0
$$

Flow over a cylinder is a classical problem
Potential flow over a cylinder is equivalent to a doublet in uniform flow See potential flow theory for details.
The analytical solution for ϕ is as follows

$$
\phi=U_{\infty} r \cos (\theta)+U_{\infty} \frac{R^{2}}{r} \cos (\theta)=U_{\infty} r \cos (\theta)\left(1+\frac{R^{2}}{r^{2}}\right)
$$

Velocity component at any point is given by

$$
\bar{V}=\hat{e}_{r} u_{r}+\hat{e}_{\theta} u_{\theta}=\nabla \phi \equiv \hat{e}_{r} \frac{\partial \phi}{\partial r}+\hat{e}_{\theta} \frac{1}{r} \frac{\partial \phi}{\partial \theta}
$$

Differentiation yields

$$
\begin{aligned}
& u_{r}=U_{\infty} \cos (\theta)\left(1-\frac{R^{2}}{r^{2}}\right) \\
& u_{\theta}=-U_{\infty} \sin (\theta)\left(1+\frac{R^{2}}{r^{2}}\right)
\end{aligned}
$$

Pressure distribution can be represented in terms of the pressure Coefficient Cp

$$
C p=\frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} U_{\infty}^{2}}
$$

Bernoulli's equation

$$
\begin{aligned}
& p+(1 / 2) \rho_{\infty} V^{2}=p_{\infty}+(1 / 2) \rho_{\infty} U_{\infty}^{2} \\
& \therefore C_{p}=1-\left(\frac{V}{U_{\infty}}\right)^{2}
\end{aligned}
$$

Recall

$$
V^{2}=u_{r}^{2}+u_{\theta}^{2}
$$

Surface pressure distribution can now be obtained by substituting $r=R$

$$
\begin{aligned}
& u_{r}=0 \\
& u_{\theta}=-2 U_{\infty} \sin (\theta) \\
& C_{p}=1-4 \sin ^{2}(\theta)
\end{aligned}
$$

Note that the surface pressure distribution is independent of the cylinder radius.

