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Relaxation technique is suitable for
solving elliptic equations such as 
the steady state heat conduction equation
and incompressible potential flow equation.

Note that we solved the heat conduction
equation as an unsteady problem in which
case the equation was parabolic.
Steady state solution in that case was 
obtained as an asymptote.



December 21, 2001 topic16_cylinder_flow_relaxation 3

Computational Fluid Dynamics (AE/ME 339)                      K. M. Isaac
MAEEM Dept., UMR

Relaxation technique is an iterative technique particularly suited for elliptic
partial differential equations.
Examples are:

�Steady state heat conduction problem
�Incompressible steady flow problems

It can be explicit or implicit
Here we will use an explicit technique known as point-iterative method.
Consider a 2D, steady, incompressible, irrotational flow.
The governing equation can be written in cartesian coordinates in terms of
the velocity potential �.
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Central differencing gives the following finite difference form

1, , 1, , 1 , , 1
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If we are solving the equation in a domain shown in Figure 6.4, 
the boundary conditions must be specified on the four sides of the 
domain, since the equation is elliptic.
The above equation can be written for each of the interior grid points
which will give a set of coupled equations whose solution can be
obtained by a suitable method.
Relaxation technique avoids using solution of simultaneous equations.
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If we treat only �i,j as the unknown, the rest of the terms assumed to be
known from the previous iterations, then an explicit solution is
possible.
If we represent the iteration level by n, then the following equation can 
be written using Eq. (6.32)

, 11, 1, , 1
2 2

1
, 2 22 2
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For starting the solution, initial guesses are made, such as a uniform flow
at the interior points.
After solution is completed at all the interior points, the next iteration step
begins.
The values at a node is updated as soon as it becomes available.
This procedure speeds up convergence.
Iteration is terminated when a specified convergence criterion is satisfied.

Successtive Over-Relaxation (SOR)

A modification of the is method is called successive over-relaxation, 
explained below. Define the following intermediate value.

1, 1, , 1

1 12 2
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, 2 22 2

( ) ( ) ......(6.36)
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Note that since we are sweeping from left to right and bottom to top,
the (n+1) values are known.
Now extrapolate to get the (n+1) value as follows.

1 1
, , , ,( )......(6.37)n n n n

i j i j i j i j� � � � �� �

� � �

Note that � = 1 yields the original method. For SOR, ��usually lies  
in the following range.

Some times under-relaxation (�<1) is used when oscillations are
observed.

1 2�� �
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The equation can first be non-dimensionalized as follows:

,

,r
r

rr
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The transformed equation becomes
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Boundary conditions:
At the surface

0
r
��

�
�

At infinity
cos( )

cos( )
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Note that the problem is completely non-dimensionalized. R and U_infinity
are absent in the equations and the boundary conditions.
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For convenience, define a new variable � = 1/r

2 1, , 1, 1, 1, , 1 , , 1
, ,2 2

2 2
0

( ) 2 ( )

Nondimensionalizing is equivalent to choosing R = 1, and U  = 1.

i j i j i j i j i j i j i j i j
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,
1, 1, , 1 , 12

choosing R = 1, and U  = 1
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Solution by Relaxation technique

We�ll denote the iteration step by a superscript (recall that previously
we used superscript for time step which should not be confused with
the present use of the superscript). 
The following symbol notation will be be used in writing the algorithm

At iteration steps n and (n+1) we will write the dependent variable at
node (i,j) as:

1
, ,and n n

i j i j� � �

We can now implement the SOR technique discussed earlier.
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Intermediate value is first calculated. Note the terms with superscript (n+1) 
on the RHS. Since we are sweeping from left to right and bottom to top
these values are known at any given iteration step.

1,

1, 1, , 1 , 1

2 1
1,

1
,

1 2 1

,
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SOR technique yields the following value at iteration step (n+1)

1 1
, , , ,( )..........(6.97)n n n n

i j i j i j i j� � � � �� �

� � �

For SOR, � should lie between 1 and 2.

Boundary Conditions

There are three boundaries for the flow domain. 

�cylinder surface
�far field conditions 
�line of symmetry
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For simplicity we will assume U_infinity = 1 and R = 1 (� = 1).
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At the cylinder surface we have the flow tangency condition (recall
that since we are solving potential flow, the tangential velocity is not
zero. Only the normal velocity is zero). The condition can be written in
terms of the velocity potential as 

0
r Rr

�

�

�
�

�

This transforms to

(1/ )

0
R�

�

�
�

�
�

�

If we use a one-sided first order difference we get the following numerical
equivalent of the the above BC  
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If we use a first order one-sided difference for the above condition we can
write

I+1,j I,j

I+1,j I,j

n+1 n+11

I+1+j

n+1 n+1

φ -φφ 0

or

φ =φ ............(10.39)

n
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�

�
� �
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boundary I+1

I

I-1
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If we use 2nd order accurate derivative at the surface we can obtain the
condition at the surface using the following Taylor series expansion

boundary I+1

I

I-1
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For zero normal gradient at the boundary we get
4 1
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or in terms of φ
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Symmetry condition
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Replace J+2 values with J values for right boundary
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Replace 0 values with 2 values for the left boundary
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                                    Convergence
The SOR method just described is also called 
Gauss-Seidal iteration method. Tannehill et al. (1997) 
have given the following convergence criterion for th

, ,
1

, ,
1

e method.
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                                for at least one 

The above is a sufficient condition for converg
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ence, meaning 
that even if the conditions are not met, convergence
could be obtained.
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