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Inviscid Burger’s Equation

It is a model equation used to test finite difference techniques
Inviscid and viscous forms can be used
Has a time dependent term, non-linear term similar to the 
convection term, and a viscous dissipation term
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Equation (1) is parabolic when the viscous dissipation term is included.
With only the terms on the LHS, the equation is hyperbolic.
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Equation 2 can be thought of as the non-linear wave equation, where
each point on the wave can propagate with a different speed.
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time-dependent convection
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Linear wave equation
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where a is the constant wave propagation speed.
As a result of u being a variable in Equation (2),
the wave can distort 
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and form discontinuities 
(Liepmann and Roshko,1957). 
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Let us consider the following equation
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Figure 1. Traveling discontinuity proble for Burger's equation
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1 2

It can be shown that the discontinuity travels 
with the speed (Tannehill et al., 1997)

               =                     (6)
2

See Figure 1.
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Consider the initial data u(x,0) shown in Figure 2.
The characteristic for Burger's equation is given by

1                                           (7)dt
dx u
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Figure 2. Characteristics for Centered Expansion
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Figure 2 shows the characteristic diagram 
plotted in the (x, t) space.
Bounded by the x = 0 (vertical) line 
and the characteristic denoted by the dashed line.
Solution can be written as
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The initial distribution of u results in a centered expansion where
the width of the expansion grows linearly with time.

The above solutions can now be used to evaluate finite difference
algorithms.
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                         Implicit methods

Time-centered implicit method (Beam-Warming, 1976)
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Consider the the following two Taylor series expansions
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( )  can be substituted in Eq. (10) using the following

Taylor series expansion
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Now we substitute the wave equation 
to get the following
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The method is 2nd order accurate (��= O[(�t)2,(�x)2]) and 
unconditionally stable for all time steps. 
A tridiagonal system must be solved for each time step 
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The Beam-Warming method can now be applied to the inviscid
Burger’s equation
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Substituting in Eq. (14) using Eq. (3) gives

     (15)
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The above is a non-linear problem since   ( ).
Linearization or iteration is therefore necessary
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eam and Warming (1976) suggested the following

( ) ( )    (16)

2 ( )      (17)
2j j

n
n n n n n n n n

n
n n n n n

FF F u u F A u u
u

t Fu u A u u
x x

� � �

� �

�� �
� 
 	 � 
 	 �

�� �

� �� � �� �� � � �� 	 
 	� � � � �� �� �� �� �



12/21/01 topic20_Burger's_Equation 19

Computational Fluid Dynamics (AE/ME 339)                      K. M. Isaac
MAEEM Dept., UMR

1 1 1
1 1 1 1

1 1
1 1 1 1

Replacing the x-derivatives using 2nd order CD
would yield the following
1 t 1 t-
4 x 4 x

t 1 t 1 t         -   (18)
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 has a single element for the Burger's 
equation. 
Eq. (18) represents linear tridiagonal system.
Solution by Thomas algorithm is feasible.  
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Beam and Warming suggests the following
explicit artificial viscosity term 

       D = -     (19)
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                                 Delta Form
Some times it is better to write the equation for
change in the variable from time level n to (n+1).
Eq. (18) then becomes
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The delta form reduces the number of arithmatic 
operations since the RHS has only one term.
Also round-off error will be smaller in this case.
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Some Examples
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Solution of Burger’s equation

Use MacCormack’s method to solve inviscid Burger’s equation using
a mesh with 51 points in the x-direction. Solve the equation for a 
right propagating discontinuity with u = 1 at the first 11 nodes
and u = 0 at the rest of the nodes. 
Use Courant number = 1.

Solution 
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