
EXAMPLE 7.3

UNSTEADY-STATE HEAT CONDUcrlON IN A LONG BAR OF SQUARE CROSS SEcrlON
(IMPLICIT AL TERNA TING-DIRECTION METHOD),--

The solution to the problem is by the implicit alterna-
ting-direction method described in the text and sum-
marized by equations (7.53a) and (7 .53b ), with the first
half time-step implicit in the X direction. Let T and T*
refer to temperatures at the beginning and end of a half

Problem Statement

An infinitely long bar of thermal diffusivity (X has a
square cross section of side 20. It is initially at a uniform
temperature 00 and then suddenly has its surface main-
tained at a temperature 01. Compute the subsequent
temperatures O(_'",Y,t) inside the bar.

Method of Solution

If dimensionless distances, time, and temperature are
defined by

x Y (Xt ° -00
X=-, y=-, t=2' and T= o 0 '

a a a 1- 0

it may be shown that the unsteady-state conduction is

governed by

Figure 7.3.1 Lower right-hand quadrant of cross section of bar.

time-step LlT/2. Equation (7.53a) is applied to each point
i = 1, 2, ..., n -1 in thejth column; also, the method of
Section 7.17 is used in conjunction with the effective
boundary condition aT/ax= O at X= O to yield a
finite-difference approximation of equation (7.3.1) at the
boundary point (O,j). We then have the following tri-
diagonal system for thejth column:

o2T a2T aT
aX2 + aY2 = a;. (7.3.1)

Because of symmetry, it suffices to solve the problem in

one quadrant only, such as that shown in Fig. 7.3.1. The
center of the bar (X = 0, y = 0) and one of its comers

(X = I, y = I) are regarded as the grid points (0,0) and

(n,n), respectively. From symmetry, there is no heat flux

r- across the X and Yaxes, which behave, in effect, as per-

fectly insulating boundaries across which the normal

temperature gradient is zero. The initial and boundary

conditions are :

or = 0: T = 0 throughout the region,
or > 0: T = 1 along the sides X = 1 and Y = 1,

aT/aX = 0 and aT/ay = 0 along the sides

X = 0 and Y = 0, respectively.

(7.3.2)

bTo~ j -(i!rl~ j = do
-T; .+ bT1* .-T 2* .= dl

.J .J .J

-T;*- l .+bT*. -Tt* +l .=d.
..J ..J ..J .

-TII*-3.j + bTII*-2.j -TII*-l.j = dll-:-

-TII*-2.j + bTII*-l.j = dll-

di=7i~J'-l+iTI,J+7i,J+l' for i=Q,1,""",n-2
} fOrj#Q,

d,,-l = T,,-l,J-l + fT,,-l,J + T,,-l,J+.l + T",J

} for j = 0,

where b = 2(11). + 1),

f = 2(1fA. -1),

). = Ll-r/(~)2.

~.



456 Approximation of the Solution of Partial Differential Equations

Flow Diagram
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