EXAMPLE 7.3

UNSTEADY-STATE HEAT CONDUCTION IN A LONG BAR OF SQUARE CROSS SECTION (IMPLICIT ALTERNATING-DIRECTION METHOD)

Problem Statement

An infinitely long bar of thermal diffusivity α has a square cross section of side $2 a$. It is initially at a uniform temperature θ_{0} and then suddenly has its surface maintained at a temperature θ_{1}. Compute the subsequent temperatures $\theta(x, y, t)$ inside the bar.

Method of Solution

If dimensionless distances, time, and temperature are defined by

$$
X=\frac{x}{a}, \quad Y=\frac{y}{a}, \quad \tau=\frac{\alpha t}{a^{2}}, \quad \text { and } \quad T=\frac{\theta-\theta_{0}}{\theta_{1}-\theta_{0}}
$$

it may be shown that the unsteady-state conduction is governed by

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial X^{2}}+\frac{\partial^{2} T}{\partial Y^{2}}=\frac{\partial T}{\partial \tau} \tag{7.3.1}
\end{equation*}
$$

Because of symmetry, it suffices to solve the problem in one quadrant only, such as that shown in Fig. 7.3.1. The center of the bar ($X=0, Y=0$) and one of its corners ($X=1, Y=1$) are regarded as the grid points $(0,0)$ and (n, n), respectively. From symmetry, there is no heat flux across the X and Y axes, which behave, in effect, as perfectly insulating boundaries across which the normal temperature gradient is zero. The initial and boundary conditions are:

$$
\begin{array}{cl}
\tau=0: & T=0 \text { throughout the region, } \\
\tau>0: & T=1 \text { along the sides } X=1 \text { and } Y=1, \\
& \partial T / \partial X=0 \text { and } \partial T / \partial Y=0 \text { along the sides } \\
& X=0 \text { and } Y=0, \text { respectively. }
\end{array}
$$

The solution to the problem is by the implicit alterna-ting-direction method described in the text and summarized by equations (7.53a) and (7.53b), with the first half time-step implicit in the X direction. Let T and T^{*} refer to temperatures at the beginning and end of a half

Figure 7.3.1 Lower right-hand quadrant of cross section of bar.
time-step $\Delta \tau / 2$. Equation (7.53a) is applied to each point $i=1,2, \ldots, n-1$ in the j th column; also, the method of Section 7.17 is used in conjunction with the effective boundary condition $\partial T / \partial X=0$ at $X=0$ to yield a finite-difference approximation of equation (7.3.1) at the boundary point $(0, j)$. We then have the following tridiagonal system for the j th column:

$$
\left.\begin{array}{rlr}
d_{i} & =T_{i, j-1}+f T_{i, j}+T_{i, j+1}, \quad \text { for } \quad i=0,1, \ldots, n-2 \\
d_{n-1} & =T_{n-1, j-1}+f T_{n-1, j}+T_{n-1, j+1}+T_{n, j} \\
d_{i} & =2 T_{i, 1}+f T_{i, 0}, \quad \text { for } \quad i=0,1, \ldots, n-2 \\
d_{n-1} & =2 T_{n-1,1}+f T_{n-1,0}+T_{n, 0} \quad \text { bot } j \neq 0,
\end{array}\right\} \text { for } j=0,
$$

where

$$
\begin{aligned}
& b=2(1 / \lambda+1), \\
& f=2(1 / \lambda-1), \\
& \lambda=\Delta \tau /(\Delta x)^{2} .
\end{aligned}
$$

Flow Diagram

