Computational Fluid Dynamics (AE/ME 339) MAEEM Dept., UMR, Fall 2001

Home Work Problem 5

A circular steel rod of length $\mathrm{L}=30 \mathrm{~cm}$, insulated on the sides, is initially at a temperature of $0^{\circ} \mathrm{C}$. Suddenly the right end is raised to a temperature of $50^{\circ} \mathrm{C}$ and maintained at that temperature, while the left end is kept insulated. Use the implicit method discussed in class and calculate the temperature distribution along the length of the rod at following times.
i) $\quad 0.05 \mathrm{~s}$
ii) $\quad 2 \mathrm{~s}$
iii) $\quad 50 \mathrm{~s}$
iv) $\quad 100 \mathrm{~s}$

1. Plot your results in non-dimensional form using $\theta=\left(\mathrm{T}-\mathrm{T}_{\mathrm{o}}\right) /\left(\mathrm{T}_{1}-\mathrm{T}_{\mathrm{o}}\right)$, where T_{0} is the initial temperature and T_{1} is the temperature at the two ends for $\mathrm{t}>0$.
2. Form a table of values of the temperature distribution at different times.
3. Check for grid independence of your solution.
