Computational Fluid Dynamics (AE/ME 339) MAEEM Dept., UMR, Fall 2001

Home Work Problem 5a

A circular steel $\operatorname{rod}\left(\alpha=1.474 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$ of length $\mathrm{L}=30 \mathrm{~cm}$, insulated on the sides, is initially at a temperature of $0^{\circ} \mathrm{C}$. Suddenly the right end is raised to a temperature of 50° C and maintained at that temperature, while the left end is kept insulated.
In order to numerically solve the non-dimensionalized governing equation using the implicit method, you need to first set up the equations. To understand the problem, you can set up using 5 intervals (6 nodes including the boundaries).

Obtain the set of equations in the tridiagonal form by calculating the numerical values of a_{i}, b_{i}, c_{i} and d_{i}. Show your results in a table showing a, b, c, d for all the i values.

