

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Dicretization of Partial Differential Equations (CLW: 7.2, 7.3)
We will follow a procedure similar to the one used in the previous class
We consider the unsteady vorticity transport equation, noting that the equation is non-linear.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Vorticity vector: $\quad \bar{\xi}=\operatorname{curl} \overline{\bar{v}}=\bar{\nabla} \times \bar{v}$

$$
=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
u & v & w
\end{array}\right|
$$

Is a measure of rotational effects.
$\bar{\xi}=2 \bar{\omega}$ where $\bar{\omega}$ is the local angular velocity of a fluid element.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

For 2-D incompressible flow, the vorticity transport equation is given by

$$
\begin{align*}
& \frac{\partial \bar{\xi}}{\partial t}+u \frac{\partial \bar{\xi}}{\partial x}+\mathrm{v} \frac{\partial \bar{\xi}}{\partial y}=v \nabla^{2} \bar{\xi} \tag{1}\\
& \nabla^{2} \bar{\xi} \equiv \frac{\partial^{2} \bar{\xi}}{\partial x^{2}}+\frac{\partial^{2} \bar{\xi}}{\partial y^{2}} \\
& v \text { - kinematic viscosity } \quad\left(\equiv \frac{\mu}{\rho}\right) \frac{m^{2}}{s}
\end{align*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

As in the case of ODE ,the partial derivatives can be discretized Using Taylor series
$u(x+h, y+k)=u(x, y)+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) u(x, y)+$
$\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} u(x, y)+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
$\frac{1}{(n-1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n-1} u(x, y)+R_{n}$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

$$
\begin{equation*}
R_{n}=O\left[(|h|+|k|)^{n}\right] \tag{3}
\end{equation*}
$$

We can expand in Taylor series for the 8 neighboring points of (i,j) using (i,j) as the central point.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

$$
\begin{equation*}
u_{i-1, j}=u_{i, j}-\Delta x u_{x}+\frac{(\Delta x)^{2}}{2!} u_{x x}-\frac{(\Delta x)^{3}}{3!} u_{x x x} \tag{4}
\end{equation*}
$$

$u_{i+1, j}=u_{i, j}+\Delta x u_{x}+\frac{(\Delta x)^{2}}{2!} u_{x x}+\frac{(\Delta x)^{3}}{3!} u_{x x x}$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Here $u_{x}=\frac{\partial u}{\partial x}, u_{x x}=\frac{\partial^{2} u}{\partial x^{2}} \quad$ etc.

Note: all derivatives are evaluated at (i,j)

Rearranging the equations yield the following finite difference formulas for the derivatives at (i, j).

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{u_{i+1, j}-u_{i, j}}{\Delta x}+O(\Delta x) \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial u}{\partial x}=\frac{u_{i, j}-u_{i-1, j}}{\Delta x}+O(\Delta x) \tag{7}\\
& \frac{\partial u}{\partial x}=\frac{u_{i+1, j}-u_{i-1, j}}{2 \Delta x}+O\left[(\Delta x)^{2}\right] \tag{8}\\
& \frac{\partial^{2} u}{\partial x^{2}}=\frac{u_{i-1, j}-2 u_{i, j}+u_{i+1, j}}{(\Delta x)^{2}}+O\left[(\Delta x)^{2}\right] \tag{9}
\end{align*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Eq.(6) is known as the forward difference formula.
Eq.(7) is known as the backward difference formula.

Eq.(8) and (9) are known as central difference formulas.
Compact notation:

$$
\begin{equation*}
\delta_{x} u_{i, j}=\frac{u_{i+\frac{1}{2}, j}-u_{i-\frac{1}{2}, j}}{\Delta x} \tag{10}
\end{equation*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

The Heat conduction problem (ID)

Consider unit area in the direction normal to x .
Energy balance for a CV of cross section of area 1 and length Δx :
Volume of CV, dV = $1 \Delta x$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Change in temperature during time interval $\Delta \mathrm{t}, \quad=\Delta \mathrm{T}$
Increase in energy of CV :

$$
\rho \Delta x 1 c_{p} \frac{\partial T}{\partial t} \Delta t+H O T
$$

This should be equal to the net heat transfer across the two faces

$$
-\left.k \frac{\partial T}{\partial x}\right|_{x} \Delta t-\left[-\left.k \frac{\partial T}{\partial x}\right|_{x}+\left.\frac{\partial}{\partial x}\left(-k \frac{\partial T}{\partial x}\right)\right|_{x} \Delta x\right] \Delta t+H O T
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Equating the two and canceling $\Delta \mathrm{t} \Delta \mathrm{x}$ gives

$$
\rho c_{p} \frac{\partial T}{\partial t}=-\frac{\partial}{\partial x}\left(-k \frac{\partial T}{\partial x}\right)
$$

Note: higher order tems (HOT) have been dropped.
If we assume $\mathrm{k}=$ constant, we get

$$
\rho c_{p} \frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}
$$

Or $\quad \frac{\partial T}{\partial t}=\frac{k}{\rho c_{p}} \frac{\partial^{2} T}{\partial x^{2}}=\alpha \frac{\partial^{2} T}{\partial x^{2}}$
Where $\quad \alpha \equiv \frac{k}{\rho c_{p}} \quad$ is the thermal diffusivity.

Letting $\xi=\mathrm{x} / \mathrm{L}$, and $\tau=\alpha \mathrm{t} / \mathrm{L} 2$, the above equation becomes

$$
\frac{\partial T}{\partial \tau}=\frac{\partial^{2} T}{\partial \xi^{2}}
$$

```
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac
    MAEEM Dept., UMR
```

The above is a Parabolic Partial Differential Equation.

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \tag{11}
\end{equation*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Physical problem
A rod insulated on the sides with a given temperature distribution at time $\mathrm{t}=0$.
Rod ends are maintained at specified temperature at all time.
Solution $\mathrm{u}(\mathrm{x}, \mathrm{t})$ will provide temperature distribution along the rod At any time $\mathrm{t}>0$.

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad 0<x<1,0<t<t_{1}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

IC:

$$
u(x, 0)=f(x) \quad 0 \leq x \leq l
$$

BC:

$$
\begin{array}{ll}
u(0, t)=g_{0}(t) & 0<t \leq t_{1} \\
u(l, t)=g_{1}(t) & 0<t \leq t_{1}
\end{array}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Difference Equation
Solution involves establishing a network of Grid points as shown in the figure in the next slide.

Grid spacing: $\quad \Delta x=\frac{l}{M}, \quad \Delta t=\frac{t_{1}}{N}$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

M, N are integer values chosen based on required accuracy and available computational resources.

Explicit form of the difference equation

$$
\begin{equation*}
\frac{u_{i, n+1}-u_{i, n}}{\Delta t}=\frac{u_{i-1, n}-2 u_{i, n}+u_{i+1, n}}{(\Delta x)^{2}} \tag{14}
\end{equation*}
$$

Define $\quad \lambda=\frac{\Delta t}{(\Delta x)^{2}}$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Then

Circles indicate grid points involved in space difference Crosses indicate grid points involved in time difference.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Note:
At time $\mathrm{t}=0$ all values $u_{i, 0}=f\left(x_{i}\right)$ are known (IC).
In eq.(15) if all $u_{i, n}$ are known at time level $t \mathrm{n}, \boldsymbol{u}_{i, n+1}$ can be calculated explicitly.

Thus all the values at a time level $(\mathrm{n}+1)$ must be calculated before advancing to the next time level.

Note: If all IC and BC do not match at $(0,0)$ and $(1,0)$, it should be handled in the numerical procedure.
Select one or the other for the numerical calculation.
There will be a small error present because of this inconsistency.

```
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR
```

Convergence of Explicit Form.
Remember that the finite difference form is an approximation. The solution also will be an approximation.

The error introduced due to only a finite number of terms in the Taylor series is known as truncation error, ε.

The solution is said to converge if

$$
\varepsilon \rightarrow 0 \quad \text { when } \quad \Delta x, \Delta t \rightarrow 0
$$

Error is also introduced because variables are represented by a finite number of digits in the computer. This is known as roundoff error.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

For the explicit method, the truncation error, ε is

$$
\varepsilon=O[\Delta t]
$$

The convergence criterion for the explicit method is as follows:

$$
0<\lambda \leq \frac{1}{2} \quad \text { where } \quad \lambda=\frac{\Delta t}{(\Delta x)^{2}}
$$

University of Missouri-Rolla

Copyright 2002 Curators of University of Missouri

