

Computational Fluid Dyna	mics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
3 time levels are involv	ed	
More difficult to formu	late IC	
More computer storage	is required	
Enor $O[(\Delta t)]$, (Δx)	
9/13/2005	topic5: cn_df_adi	

Computational Fluid Dynamics (AE	ME 339) K. M. Isa MAEEM E	ac Dept., UMR
Alternating-Direction Implicit	(ADI) Method (7.14)	
The unsteady state heat conduct	ion in a slab is governed by the	following
equation $\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2} +$	$\frac{\partial^2 u}{\partial y^2}$	
Top and bottom surfaces are Insulated	Figure	
BC are imposed on the 4 sides		

Computational Fluid Dynam	ics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Explicit Method		
$\frac{u_{i,j,n+1} - u_{i,j,n}}{\Delta t} = \delta$	$\int_{x}^{2} u_{i,j,n} + \delta_{y}^{2} u_{i,j,n}$	
Stability Criterion: Δt	$\leq \frac{1}{2\left\lceil \left(\Delta x\right)^{-2} + \left(\Delta y\right)^{-2}\right\rceil}$	
Implicit Method		
$\frac{u_{i,j,n+1}-u_{i,j,n}}{\Delta t}=\delta_x^2$	$^2u_{i,j,n+1}+\delta_y^2u_{i,j,n+1}$	
Writing in full with Δx	$x = \Delta y$ yields	
9/13/2005	topic5: cn_df_adi	11

Computational Fluid Dynamics (AE/ME 339)K. M. Isaac
MAEEM Dept., UMRCan write
$$\rho c_p \frac{\partial T}{\partial t} = k \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right]$$
ProcedureNon-dimensionalize the equations as follows $X = \frac{x}{a}$, $Y = \frac{y}{a}$, $\tau = \frac{\alpha t}{a^2}$, $\theta = \frac{T - T_0}{T_1 - T_0}$ $\frac{\partial \theta}{\partial \tau} = \frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2}$ Observe: Problem has symmetry in geometry, IC and BC about both x
and y axis9/13200top:: cn_df_adit

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
Types of BC (7.17)	
Instead of u , $\frac{\partial u}{\partial n}$, $\frac{\partial u}{\partial s}$ or a combination boundary	on may be specified at the
Dirichlet condition: $u=g$	
Neumann condition: $\alpha u_n + \beta u_s =$	g
Mixed BC: $\alpha u_n + \beta u_s + \beta u_s$	$\gamma u = g$
Where α , β , γ are constants and g is a known by a near the second state of the	own function. al and tangential derivatives.

Computational Fluid Dynam	ics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
For u_{x} , use Taylor s	eries as follows to exp	pand about (0,j)
$u_{1,j} = u_{0,j} + u_x \Delta x$ $u_{xx} = \frac{2}{(\Delta x)^2} \Big[u_{1,j} - $	$+ u_{xx} \frac{\left(\Delta x\right)^2}{2!} + O$ $u_{o,j} - u_x \Delta x \right] + C$	$P\left[\left(\Delta x\right)^{3}\right]$ $P\left[\Delta x\right]$
Using the BC $u_x = at$	u-g we get	
$u_{xx} = \frac{2}{\left(\Delta x\right)^2} \Big[u_{1,j} -$	$(a\Delta x+1)u_{o,j}+$	$g\Delta x$] + $O[\Delta x]$
9/13/2005	topic5: cn_df_adi	22

$$\begin{split} & \text{Computational Fluid Dynamics (AE/ME 339)} & \text{K. M. Isac} \\ & \text{MAEEM Dept., UMR} \\ \\ & \text{Final implicit form of FD approximation (2D parabolic) at point (0,j)} \\ & -\frac{2}{(\Delta x)^2} \Big[\mu_{1,j}^{n+1} - (\alpha \Delta x + 1) \mu_{0,j}^{n+1} + g \Delta x \Big] \\ & + \beta_y^2 \mu_{0,j}^{n+1} = \frac{\mu_{0,j}^{n+1} - \mu_{0,j}^n}{\Delta t} \\ & \text{Final extra conduction problem with insulated end} \\ & \text{BC at insulated end is } \frac{\partial u}{\partial x} = 0 \\ & \text{Therefore from the above equation (set a=g=0)} \\ & \mu_{xx} = \frac{2}{(\Delta x)^2} \Big[\mu_{1,j} - \mu_{0,j} \Big] + O[\Delta x] \\ & \text{MAEEM Dept., UMR} \end{split}$$

