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Crank-Nicolson method 

Previous explicit and implicit methods have discretization error

2,( )O t xε ⎡ ⎤= ∆ ∆⎣ ⎦

, 1 , 1 2

Recall, the central difference formula:
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Let us now try the following form for the second derivative
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Define the central difference operators
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The above form involves 6 points to represent
2

2

u
x

∂
∂

0 1θ≤ ≤
Depending on the value of θ, the method will be explicit (θ = 0), 
implicit (θ = 1), or a combination of the two. 

For the Crank–Nicolson (C-N) method,   θ = ½.
The difference equation now becomes 

, 1 , 2 2
, 1 ,

1 1
2 2

i n i n
x i n x i n

u u
u u

t
δ δ+

+

−
= +

∆

C-N method has the following properties:
i) Stable for all values of the ratio, λ = ∆t/(∆x)2

And θ lies in the range: 
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(ii) Has truncation error

When written in full, the equation becomes

2 2( ) , ( )O t x⎡ ⎤∆ ∆⎣ ⎦

( )1 , 1 , 1 1 , 12 1i n i n i nu u uλ λ λ− + + + +− + + − =

( )1 , , 1 ,2 1i n i n i nu u uλ λ λ− ++ − +
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Dufort-Frankel Method (7.13)

( )
, 1 , 1 1, , 1 , 1 1,

22
i n i n i n i n i n i nu u u u u u

t x
+ − − − + +− − − +

=
∆ ∆

Method is an unconditionally stable, explicit method
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( ) ( )2 2,O t x⎡ ⎤∆ ∆⎣ ⎦

3 time levels are involved
More difficult to formulate IC
More computer storage is required

Error
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Alternating-Direction Implicit  (ADI)     
Method (7.14)
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Alternating-Direction Implicit  (ADI)  Method (7.14)

The unsteady state heat conduction in a slab is governed by the following 

equation 2 2

2 2

u u u
x yτ

∂ ∂ ∂
= +

∂ ∂ ∂

Top and bottom surfaces are 
Insulated

BC are imposed on the 4 sides

Figure
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Explicit Method

, , 1 , , 2 2
, , , ,

i j n i j n
x i j n y i j n

u u
u u

t
δ δ+ −

= +
∆

Stability Criterion:
( ) ( )2 2

1
2 x y

t − −⎡ ⎤∆ + ∆
⎣ ⎦

∆ ≤

Implicit Method

, , 1 , , 2 2
, , 1 , , 1

i j n i j n
x i j n y i j n

u u
u u

t
δ δ+

+ +

−
= +

∆

Writing in full with x y∆ = ∆ yields
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( )1, , 1 , 1, 1 , , 1 , 1, 11 4i j n i j n i j n i j nu u u uλ λ λ λ− + − + + + +− − + + −

1, , 1 , ,i j n i j nu uλ + +− =

Scheme is stable for all values of  λ
There are 5 unknowns per equation
Gauss elimination for solution is more complicated
System is not tri-diagonal

ADI Method

Let us now consider a parabolic PDE in two dimensions denoted by x and y
i.e., 2 2

2 2

u u u
t x y

∂ ∂ ∂
= +

∂ ∂ ∂
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ADI uses two finite difference equations used in turn over successive time 
steps each of size ∆t/2

The first equation is implicit only in the x-direction
Second equation is implicit only in the y-direction

,i ju∗ is an intermediate value at the end of time step ∆t/2 

Step 1 , , , 2 2
, , ,( / 2 )

i j i j n
x i j y i j n

u u
u u

t
δ δ

∗
∗−

= +
∆

* 1/ 2
, ,Another way of writing:        n

i j i ju u +≡
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Step 2
( )

, , 1 , 2 2
, , , 12

i j n i j
x i j y i j n

u u
u u

t
δ δ

∗
+ ∗

+

−
= +

∆

,i ju∗
values are solved for in the first step and

, , 1i j nu + values are solved for in the second step

Advantage is that the matrices in both steps are still tri-diagonal

Exercise: Write the equations in full using

( )2
t

x
λ ∆

=
∆

and x y∆ = ∆

Can be shown that procedure is unconditionally stable

Discretization error ( ) ( )2 2,O t x⎡ ⎤∆ ∆⎣ ⎦
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ADI can also be used for solving elliptic PDE’s

ADI is not recommended for 3D problems

Figure

Example
An infinitely long bar has thermal diffusity

                       =
p

k
c

α
ρ

Square cross section of side 2a
IC:  Temperature is uniform at T0
BC:  side surface temperature T1

Compute temperature distribution T(x,y,t) inside the slab
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Can write
2 2

2 2p
T T Tc k
t x y

ρ
⎡ ⎤∂ ∂ ∂

= +⎢ ⎥∂ ∂ ∂⎣ ⎦

Procedure

Non-dimensionalize the equations as follows

,x
a

Χ = ,y
a

Υ = 2 ,t
a
ατ = 0

1 0

T T
T T

θ −
=

−

2 2

2 2

θ θ θ
τ

∂ ∂ ∂
= +

∂ ∂Χ ∂Υ

Observe: Problem has symmetry in geometry, IC and BC about both x 
and y axis
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Need to solve only one quadrant

figure

Due to symmetry there is no heat flux
across X, Y axes (insulated boundaries)

IC:

BC:

0,τ = 0θ = throughout the domain

0τ > 1θ = along sides X=1 and Y=1

along      X=0

along      Y=0

0
Y
θ∂

=
∂

0
X
θ∂

=
∂
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Treatment of Boundary Conditions
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Types of BC (7.17)

Instead of u ,
boundary

u
n

∂
∂

u
s

∂
∂

, or a combination may be specified at the 

Dirichlet condition: 

Neumann condition:

Mixed BC: 

n su u gα β+ =

u=g

n su u u gα β γ+ + =

Where α, β, γ are constants and g is a known function.
n and s denote, respectively, the normal and tangential derivatives.
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,
For heat transfer at the straight boundary, x = 0, (see figure), the 
following can be written.

nu au g− + =

xu au g− + =

For the case shown where the boundary
is at x = 0, the above equation becomes
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tu and            may be obtained at the boundary as before. 
Note that, when the boundary condition is given in terms of the 
derivatives, uo,j should be treated as an unknown and solved for. 
An equation for i = 0 can be developed as follows. 

yyu

Consider the earlier parabolic PDE

t xx yyu u u= +
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For            , use Taylor series as follows to expand about (0,j)xxu

( ) ( )
2

3
1, 0 , 2 !j j x xx

x
u u u x u O x

∆ ⎡ ⎤= + ∆ + + ∆⎣ ⎦

( )
[ ]1, ,2

2
xx j o j xu u u u x O x

x
⎡ ⎤= − − ∆ + ∆⎣ ⎦∆

Using the BC xu au g= − we get

( )
( ) [ ]1, ,2

2 1xx j o ju u a x u g x O x
x

⎡ ⎤= − ∆ + + ∆ + ∆⎣ ⎦∆
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Write the corresponding equation for uxx for the heat
conduction problem with an insulated boundary.

( )
[ ]1, 0 ,2

2
xx j ju u u O x

x
⎡ ⎤= − + ∆⎣ ⎦∆
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Final implicit form of FD approximation (2D parabolic) at point (0,j)

( )
( )1 1

1 , 0 ,2

1
0 , 0 ,2 1

0 ,

2 1n n
j j

n n
j jn

y j

u a x u g x
x

u u
u

t
δ

+ +

+
+

⎡ ⎤− ∆ + + ∆⎣ ⎦∆

−
+ =

∆
Example: 1D heat conduction problem with insulated end

BC at insulated end is 0u
x

∂
=

∂

Therefore from the above equation (set a=g=0)

[ ]1, 0,2

2
( )xx j ju u u O x

x
⎡ ⎤= − + ∆⎣ ⎦∆
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At point  (i = 0)  equation becomes

( )

1
1 1 0 0

1 02
2 n n

n n u uu u
tx

+
+ + −⎡ ⎤− =⎣ ⎦ ∆∆

1 1 1
0 0 1 02n n n nu u u uλ+ + +⎡ ⎤− = −⎣ ⎦

( ) 1 1
0 1 01 2 2n n nu u uλ λ+ ++ − = ………………………(A)

From (A) 1

1

1 0

1 2
2
n

b
c

u

λ
λ

α

= +
= −

=
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Treatment of Non-linear Terms 
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Non –linear PDE’s
The heat conduction equation of the previous sections is linear

Fluid flow equations often have non-linear terms

Example: x-Momentum equation of 2D steady, incompressible flow
2

2

u u p uu v
x y x y

µ∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂

Since u and v are the velocity components in x,y directions respectively
the LHS terms are non-linear

Previous techniques can be adapted to solve non-linear equations

The basic approach is to linearize the equations

9/13/2005 topic5: cn_df_adi 28

Computational Fluid Dynamics (AE/ME 339)                      K. M. Isaac
MAEEM Dept., UMR

In              , if the coefficient u of         is treated as a known quantity, then

the equation becomes linear

uu
x

∂
∂

u
x

∂
∂

When unsteady equations are solved  u at the beginning of the time step
can be used as the multiplier( ),

n
i ju

For example, the first term can be discretized as
1 1

1, ,
,

n n
i j i jn

i j

u u
u

x

+ +
+⎛ ⎞−

⎜ ⎟∆⎝ ⎠
Would be the fully implicit form of the first term

when we use the forward difference form for
u
x

∂
∂
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Note that superscript n denotes quantities at time level tn , which would be 
known from the previous solution step

Exercise: Write the same for the 2nd term

When steady state problems are solved using iterative techniques, values
from the previous iteration step would be used as the multiplier u

Other non-linear forms

( )Consider  ,  the mass diffusion term

in mass transfer problems.

cD c
x x

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠

Note D( c ), the diffusion coefficient, is a function of the dependent 
variable, c, the concentration
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If we use the model

the above term becomes

( )D c cα β= +

( )
22

2

c c cD D c
x x x x

α∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

The first term on the RHS would be linearized as before using 
as the multiplier

,
n
i jD

To use the implicit procedure for the 2nd RHS term, it can be split as
c c
x x

∂ ∂⎛ ⎞ ⎛ ⎞×⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

and treat the first half as a constant.

Note α and β are constants in the above discussion


