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“........in the phrase ‘computational fluid dynamics’ the word 
‘computational’ is simply an adjective to 
‘fluid dynamics.’..........”

-John D. Anderson
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Equations of Fluid Dynamics, Physical Meaning of the terms, 
Forms suitable for CFD

Equations are based on the following physical principles:

• Mass is conserved

• Newton’s Second Law: F = ma

• The First Law of thermodynamics: ∆e = δq - δw, for a 
system. 
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The form of the equation is immaterial in a mathematical 
sense. 

But in CFD applications, success or failure often depends 
on what form the equations are formulated in.

This is a result of the CFD techniques not having firm 
theoretical foundation regarding stability and convergence, 
von Neumann’s stability analysis notwithstanding. 

Recall that von Neumann stability analysis is applicable 
only for linear PDEs. 

The Navier-Stokes equations are non-linear.
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An important associated topic is the treatment of the boundary 
conditions. 

This would depend on the CFD technique used for the 
numerical solution of the equations. Hence the term, 
“numerical boundary condition.”

Control Volume Analysis

The governing equations can be obtained in the integral form 
by choosing a control volume (CV) in the flow field and 
applying the principles of the conservation of mass, 
momentum and energy to the CV.
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The resulting PDE and the original integral form are in the 
“conservation form.”

If the equations in the conservation form are transformed 
by mathematical manipulations, they are said to be in the 
“non-conservation” form.

see Figure (next slide)
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Consider a differential volume element dV in the flow field. 
dV is small enough to be considered infinitesimal but large 
enough to contain a large number of molecules for 
continuum approach to be valid.

dV may be:

• fixed in space with fluid flowing in and out of its surface    
or, 

• moving so as to contain the same fluid particles all the 
time. In this case the boundaries may distort and the 
volume may change. 
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Substantial derivative (time rate of change following a 
moving fluid element)

Insert Figure 2.3
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The velocity vector can be written in terms of its Cartesian 
components as:

where 

u = u(t, x, y, z)

v = v(t, x, y, z)

w = w(t, x, y, z)

ˆˆ ˆ( , , , ) ( , , , ) ( , , , )V iu t x y z jv t x y z kw t x y z= + +
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@ time t1:

@ time t2:

Using Taylor series

1 1 1 1 1( , , , )t x y zρ ρ=

2 2 2 2 2( , , , )t x y zρ ρ=

2 1 2 1 2 1 2 1 2 1
1 1 11

( ) ( ) ( ) ( )t t x x y y z z
t x y z
ρ ρ ρ ρρ ρ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

( )higher order terms+ − −

9/22/2005 Topic 6 
FluidFlowEquations_Introduction

12

Computational Fluid Dynamics (AE/ME 339)                      K. M. Isaac
MAEEM Dept., UMR

The time derivative can be written as shown on the RHS in the 
following equation. This way of writing helps explain the meaning of 
total derivative. 

2 1 2 1 2 1 2 1

1 1 12 1 2 1 2 1 2 11

...........(2.1)x x y y z z
t t t x t t y t t z t t
ρ ρ ρ ρ ρ ρ⎛ ⎞− ∂ ∂ − ∂ − ∂ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟− ∂ ∂ − ∂ − ∂ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
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We can also write

2 1

2 1

2 1

lim
t t

D
t t Dt
ρ ρ ρ

→

−
≡

−

2 1

2 1

2 1

lim
t t

x x u
t t→

−
≡

−

2 1

2 1

2 1

lim
t t

y y v
t t→

−
≡

−

2 1

2 1

2 1

lim
t t

z z w
t t→

−
≡

−
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where the operator        can now be seen to be defined in 
the following manner.

∴

...........(2.2)D u v w
Dt t x y z
ρ ρ ρ ρ ρ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

D
Dt

.........(2.3)D u v w
Dt t x y z

∂ ∂ ∂ ∂
≡ + + +
∂ ∂ ∂ ∂

Substitution of the above in equation (2.1) yields
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The        operator in vector calculus is defined as

which can be used to write the total derivative as

∇

ˆˆ ˆ ...........(2.4)i j k
x y z
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

( )...........(2.5)D V
Dt t

∂
≡ + ⋅∇
∂
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Example: derivative of temperature, T 

( ) ........(2.6)
convective

local derivative
derivative

DT T T T T TV T u v w
Dt t t x y z

∂ ∂ ∂ ∂ ∂
≡ + ⋅∇ ≡ + + +

∂ ∂ ∂ ∂ ∂
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A simpler way of writing the total derivative is as follows:

............(2.7)d dt dx dy dz
t x y z
ρ ρ ρ ρρ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

............(2.8)d dx dy dz
dt t x dt y dt z dt
ρ ρ ρ ρ ρ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂

..........(2.9)d u v w
dt t x y z
ρ ρ ρ ρ ρ∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂
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The above equation shows that         and         have the same meaning, 

and the latter form is used simply to emphasize the physical meaning 
that it consists of the local derivative and the convective derivatives.

Divergence of Velocity (What does it mean?) ( Section 2.4)

Consider a control volume moving with the fluid. 
Its mass is fixed with respect to time.
Its volume and surface change with time as it moves from one location 
to another. 

d
dt
ρ D

Dt
ρ
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Insert Figure 2.4
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The volume swept by the elemental area dS during time interval ∆t can 
be written as 

Note that, depending on the orientation of the surface element, ∆v could 
be positive or negative. Dividing by ∆t and letting            0 gives the 
following expression.

( ) ( )ˆ .........(2.10)V V t n dS V t dS⎡ ⎤∆ = ∆ ⋅ = ∆ ⋅⎣ ⎦

V∆ →

( )
0

1 ..........(2.11)lim
t S S

DV V t dS V dS
Dt t∆ →

= ∆ ⋅ = ⋅
∆ ∫∫ ∫∫
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The LHS term is written as a total time derivative because the fluid 
element is moving with the flow and it would undergo both the local 
acceleration and the convective acceleration.

The divergence theorem from vector calculus can now be used to 
transform the surface integral into a volume integral. 

( ). ........(2.12)
V

DV V dV
Dt

= ∇∫∫∫
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If we now shrink the moving control volume to an infinitesimal volume,   
,     , the above equation becomes 

When                  the volume integral can be replaced by  
on the RHS to get the following. 

The divergence of        is the rate of change of volume per unit volume.

( )
δV

( ) ...............(2.13)D V V dV
Dt

= ∇ ⋅∫∫∫
δV  0→

1 ( ) .........(2.14)D VV
V Dtδ

∇ ⋅ =

δV

V Vδ∇ ⋅

V
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Continuity Equation (2.5)

Consider the CV fixed in space. Unlike the earlier case the shape and 
size of the CV are the same at all times. The conservation of mass can 
be stated as:

Net rate of outflow of mass from CV through surface S = time rate of 
decrease of mass inside the CV
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The net outflow of mass from the CV can be written as 

Note that        by convention is always pointing outward. Therefore   
can be (+) or (-) depending on the directions of the velocity and the 
surface element.

..........(2.16)
s

V dSρ ⋅∫∫
V dS⋅dS
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Total mass inside CV

Time rate of increase of mass inside CV

Conservation of mass can now be used to write the following equation 

See text for other ways of obtaining the same equation.

..........(2.20)
V

Mass dVρ= ∫∫∫

................(2.18)
V

dV
t

ρ∂
∂ ∫∫∫

0.................(2.19)
V S

dV V dS
t

ρ ρ∂
+ ⋅ =

∂ ∫∫∫ ∫∫
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( )

( )

Use divergence theorem for the second term

0.................(2.19)

0

0

 is arbitrary.

    0

This is the diver

V S

S V

V V

V

dV V dS
t

V dS V dV

dV V dV
t

V dV
t

dV

V
t

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ

∂
+ ⋅ =

∂

⋅ = ∇ ⋅

∂
+ ∇⋅ =

∂

∂⎛ ⎞+∇⋅ =⎜ ⎟∂⎝ ⎠

∂
∴ +∇⋅ =

∂

∫∫∫ ∫∫

∫∫ ∫∫∫

∫∫∫ ∫∫∫

∫∫∫

gence form of the conservation of mass equation
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An infinitesimally small element fixed in space
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Net mass flow = 

( ) ( )( ) uuu dx dydz u dydz dxdydz
x x

ρρρ ρ
∂∂⎡ ⎤+ − =⎢ ⎥∂ ∂⎣ ⎦

( ) ( ) ( )v v
v dy dxdz v dxdz dxdydz

y y
ρ ρ

ρ ρ
∂ ∂⎡ ⎤

+ − =⎢ ⎥∂ ∂⎣ ⎦

( ) ( ) ( )w w
w dz dxdy w dxdy dxdydz

z z
ρ ρ

ρ ρ
∂ ∂⎡ ⎤

+ − =⎢ ⎥∂ ∂⎣ ⎦

( ) ( ) ( ) ..........(2.22)
u v w

dxdydz
x y z
ρ ρ ρ∂ ∂ ∂⎡ ⎤

+ +⎢ ⎥∂ ∂ ∂⎣ ⎦

Net outflow in x-direction

Net outflow in y-direction

Net outflow in z-direction
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volume of the element = dx dy dz
mass of the element = ρ(dx dy dz)

Time rate of mass increase = ( ) ...........(2.23)dxdydz
t
ρ∂
∂

Net rate of outflow from CV = time rate of decrease of mass
within CV

( ) ( ) ( ) ( )u v w
dxdydz dxdydz

x y z t
ρ ρ ρ ρ∂ ∂ ∂⎡ ⎤ ∂

+ + = −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

( ) ( ) ( ) 0.......(2.24)
u v w

t x y z
ρ ρ ρρ ∂ ∂ ∂⎡ ⎤∂

+ + + =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

or
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( ) 0..........(2.25)V
t
ρ ρ∂
+ ∇ ⋅ =

∂

Which becomes

The above is the continuity equation valid for unsteady flow 
Note that for steady flow and unsteady incompressible flow the 

first term is zero.
Note that Eq. 2.21 is wrong (also shown in Fig. 2.6

Read Section 2.5.4 for alternate form of derivation

Figure 2.6 (next slide) shows conservation and non-conservation forms 
of the continuity equation. Note an error in Figure 2.6: Dp/Dt should be 
replace with Dρ/Dt.

Read Section 2.5.5
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