

Computational Fluid	d Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
in the phro	ase 'computational fluid	dynamics' the word
omputational' uid dynamics.	is simply an adjective to ')
·		-John D. Anderson

Computational Fluid	d Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Equations of F Forms suitable	Fluid Dynamics, Physica e for CFD	l Meaning of the terms,
Equations are	based on the following p	physical principles:
• Mass is cons	erved	
• Newton's Se	cond Law: $\mathbf{F} = \mathbf{ma}$	
• The First La system	w of thermodynamics: Δ	$e = \delta q - \delta w$, for a
9/22/2005	Topic 6 FluidFlowEquations_Introdu	3 action

Computational Fluid Dyna	amics (AE/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
The form of the easense.	quation is immateria	l in a mathematical
But in CFD applie on what form the	cations, success or fa equations are formu	ailure often depends lated in.
This is a result of theoretical founda von Neumann's s	the CFD techniques tion regarding stabi tability analysis not	s not having firm lity and convergence, withstanding.
Recall that von N only for linear PD	eumann stability ana Es.	alysis is applicable
The Navier-Stoke	s equations are non-	linear.
9/22/2005	Topic 6	

Computational Flui	d Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
An important a conditions.	ssociated topic is the trea	atment of the boundary
This would dep numerical solut 'numerical bou	end on the CFD techniq tion of the equations. He indary condition."	ue used for the nce the term,
	Control Volume Analys	is
The governing by choosing a c applying the pr momentum and	equations can be obtained control volume (CV) in t inciples of the conservat l energy to the CV.	ed in the integral form he flow field and ion of mass,
9/22/2005	Topic 6 FluidFlowEquations Introd	uction

Computational Fluid D	Dynamics (AE/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
The resulting P "conservation f	DE and the original into orm."	egral form are in the
If the equations	in the conservation for	m are transformed
by mathematica "non-conservat	al manipulations, they a ion" form.	re said to be in the
	see Figure (next sli	de)
	e (,

K. M. Isaac MAEEM Dept., UMR
ent d \mathcal{V} in the flow field. I infinitesimal but large molecules for
and out of its surface
luid particles all the ries may distort and the

Computational Fluid Dyna	mics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Substitution of the	above in equation ((2.1) yields
$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + u$	$v\frac{\partial\rho}{\partial y} + w\frac{\partial\rho}{\partial z}$.(2.2)
where the operator $\frac{L}{D}$ the following manner	$\frac{2}{r}$ can now be seen to b	be defined in
$\frac{D}{Dt} \equiv \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}$	$+w\frac{\partial}{\partial z}$ (2.3)	

Computational Flu	d Dynamics (AE/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
The above equat	ion shows that $\frac{d\rho}{dt}$ and $\frac{D\rho}{Dt}$	have the same meaning,
and the latter for	m is used simply to emphasiz	te the physical meaning
that it consists o	f the local derivative and the c	convective derivatives.
Divergence of V	elocity (What does it mean?)	(Section 2.4)
Consider a contr	ol volume moving with the fl	uid.
Its mass is fixed	with respect to time.	
its volume and s	urface change with time as it	moves from one location
to unother.		
9/22/2005	Topic 6	18

Computational Fluid Dynamics (AE/M	E 339)	K. M. Isaac MAEEM Dept., UMR
f we now shrink the moving cont \checkmark , the above equation becomes	trol volume to an ir	nfinitesimal volume,
$\frac{D(\Psi)}{Dt} = \iiint \left(\overline{\nabla} \cdot \overline{V} \right) d\Psi$	(2.13)	
When $\delta \Psi \to 0$ the volume integon the RHS to get the following.	gral can be replaced	by $\overline{\nabla} \cdot \overline{V} \delta \Psi$
$\overline{\nabla} \cdot \overline{V} = \frac{1}{\delta \Psi} \frac{D(\Psi)}{Dt}$	(2.14)	
The divergence of \overline{V} is the rate	of change of volun	ne per unit volume.
9/22/2005 FluidFlov	Topic 6 vEquations Introduction	

Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
	Continuity Equation (2.)	<u>5)</u>
Consider the CV size of the CV are be stated as:	fixed in space. Unlike the ea e the same at all times. The c	arlier case the shape and onservation of mass can
Net rate of outflow decrease of mass	w of mass from CV through s inside the CV	surface $S = time rate of$
9/22/2005	Topic 6	24

