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........ in the phrase ‘computational fluid dynamics’ the word
‘computational’ is simply an adjective to
‘fluid dynamics.’.......... 7

-John D. Anderson
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Equations of Fluid Dynamics, Physical Meaning of the terms,
Forms suitable for CFD

Equations are based on the following physical principles:
» Mass is conserved
* Newton’s Second Law: F = ma

* The First Law of thermodynamics: Ae = dq - dw, for a

system.
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The form of the equation is immaterial in a mathematical
sense.

But in CFD applications, success or failure often depends
on what form the equations are formulated in.

This is a result of the CFD techniques not having firm
theoretical foundation regarding stability and convergence,
von Neumann'’s stability analysis notwithstanding.

Recall that von Neumann stability analysis is applicable
only for linear PDEs.

The Navier-Stokes equations are non-linear.
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An important associated topic is the treatment of the boundary
conditions.

This would depend on the CFD technique used for the
numerical solution of the equations. Hence the term,
“numerical boundary condition.”

Control Volume Analysis

The governing equations can be obtained in the integral form
by choosing a control volume (CV) in the flow field and
applying the principles of the conservation of mass,
momentum and energy to the CV.
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The resulting PDE and the original integral form are in the
“conservation form.”

If the equations in the conservation form are transformed
by mathematical manipulations, they are said to be in the
“non-conservation” form.

see Figure (next slide)
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Madels of a flow. (a) Finite control volume approach; (b) infinitesimal fluid element approach.
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Consider a differential volume element d7/ in the flow field.
d?’ is small enough to be considered infinitesimal but large
enough to contain a large number of molecules for
continuum approach to be valid.

d?’ may be:

» fixed in space with fluid flowing in and out of its surface
or,

* moving so as to contain the same fluid particles all the
time. In this case the boundaries may distort and the
volume may change.
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Substantial derivative (time rate of change following a
moving fluid element)

Insert Figure 2.3
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The velocity vector can be written in terms of its Cartesian
components as:

V =iu(t, X, y,2)+ JV(t,X, Y, 2) + kw(t, X, y, )

where
u=u( x,vy, z)
v=v(t, XY, 2)
w =w(t, X, Y, 2)
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@ time t;:
o =pA,X%,Y,,7)

@ time t,:
p2 = p(tzaxzs yzazz)

Using Taylor series

— o+ 9P) t —ty4[9P) (x - Py - P (4 _
pz_pl+(8t)l(t2 t1)+(axj](xz X1)+[ayl(yz y1)+(52)1(22 Zl)

+(higher —order —terms)
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The time derivative can be written as shown on the RHS in the
following equation. This way of writing helps explain the meaning of
total derivative.

() () () (2]
tz_tl ot 1 OX ltz_tl ay : tz_tl oz 1t2—t1 ........... .
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We can also write

lim P2 =P E%
Lot tz_tl Dt

. X, =X
lim—2—L=u
Lo t2 - tl

lim Y.~ ¥
Lot tz _tl

=V

. 1,—1
lim—2—L=w

Lot t2 — tl
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Substitution of the above in equation (2.1) yields

Do_p 9y WP . 22

Dt ot OX oy

where the operator D% can now be seen to be defined in
the following manner.

D_0,l8viwl. 23

Dt ot ox oy oz
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The ¥ operator in vector calculus is defined as

D o0 =
—=—+(V V)i (2.5)
Dt ot
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Example: derivative of temperature, T
DT oT - = oT oT oT oT
= (VT =t U—+V—t W—.......(2.6)
o convective
local derivative
derivative
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A simpler way of writing the total derivative is as follows:

dp=Pot+Pox+Poy+ Py 2.7)
ot OX oy 0z

dp_dp, opdx dpdy dpdz
d ot oxdt oy dt oz dt

dp _op 9P, P WP .. (2.9)
dt ot OX oy 0z
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The above equation shows that d_p and% have the same meaning,
dt

and the latter form is used simply to emphasize the physical meaning

that it consists of the local derivative and the convective derivatives.

Divergence of Velocity (What does it mean?) ( Section 2.4)

Consider a control volume moving with the fluid.

Its mass is fixed with respect to time.

Its volume and surface change with time as it moves from one location
to another.
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FIG. 24
Moving control volume used for tl
of the divergence of velocity.
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The volume swept by the elemental area dS during time interval At can
be written as

AV-=[ (VAL)-A |dS = (VAL)-dS........(2.10)

Note that, depending on the orientation of the surface element, Av could
be positive or negative. Dividing by At and letting s+ — 0 gives the
following expression.

%zlgglftg(mt)-d§:jsj\7.d§ .......... 2.11)
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The LHS term is written as a total time derivative because the fluid
element is moving with the flow and it would undergo both the local
acceleration and the convective acceleration.

The divergence theorem from vector calculus can now be used to
transform the surface integral into a volume integral.

bv_ m(V\T)d\,L ........ (2.12)

Dt ;-
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If we now shrink the moving control volume to an infinitesimal volume,
&V , the above equation becomes

%:J}J(V\T)dv ............... (2.13)

When &V — 0 the volume integral can be replaced by V.V SV
on the RHS to get the following.

The divergence of \/ is the rate of change of volume per unit volume.

9/22/2005 Topic 6 22
FluidFlowEquations_Introduction

11



Computational Fluid Dynamics (AE/ME 339) K. M. Isaac
MAEEM Dept., UMR

ds

N
,—M\

FIG. 2.5
Finite control volume fixed in space.
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Continuity Equation (2.5)

Consider the CV fixed in space. Unlike the earlier case the shape and
size of the CV are the same at all times. The conservation of mass can
be stated as:

Net rate of outflow of mass from CV through surface S = time rate of
decrease of mass inside the CV
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The net outflow of mass from the CV can be written as

[[pV-d5......... (2.16)

S

Note that dS by convention is always pointing outward. Therefore \/ . 45
can be (+) or (-) depending on the directions of the velocity and the
surface element.
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Total mass inside CV

%jﬂpd\/— ................ (2.18)

Conservation of mass can now be used to write the following equation

%ijd\ﬂﬂp\fﬁ:o ................. (2.19)

See text for other ways of obtaining the same equation.
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Use divergence theorem for the second term

gjijpdvqup\?d&o ................. (2.19)
[sj,o\hﬁ=jJLj(vp\7)d\7L
gjgpwqy(vmdv:o

jﬂ(%+ip\7jdv—=0

dV- is arbitrary.
op = -
—+V-pV =0
o P

This is the divergence form of the conservation of mass equation
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An infinitesimally small element fixed in space
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Model of the infinitesimally small element fixed in space and a diagram of the mass fuxes through the
various faces of the element—ifor a derivation of the continuity equation.
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Net outflow in x-direction
[pu + aApY) dx} dydz — (pu)dydz = a(pu) dxdydz
OX OX
Net outflow in y-direction
{pv + %dy} dxdz —(pv)dxdz = %dxdydz

Net outflow in z-direction

|:pW + 0 (g;w) dz}dxdy —(pw)dxdy = @ dxdydz

Net mass flow = |:6(pu) + o(pY) + a(;\'\’)}dxdydz .......... (2.22)

oX oy
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volume of the element = dx dy dz
mass of the element = p(dx dy dz)

0
Time rate of mass increase = Ep(dXdde) ~~~~~~~~~~~ (2.23)

Net rate of outflow from CV = time rate of decrease of mass
within CV

{G(PU)Jr@(PV)+5(;W)}dxdydzz_%(dxdyd2)

OX oy

or

6_p+ d(pu) . o(pv) . o(pw)
ot | x| oy oz
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Which becomes

a _ —
E”W-(pv):o .......... (2.25)

The above is the continuity equation valid for unsteady flow
Note that for steady flow and unsteady incompressible flow the
first term is zero.

Note that Eq. 2.21 is wrong (also shown in Fig. 2.6

Read Section 2.5.4 for alternate form of derivation

Figure 2.6 (next slide) shows conservation and non-conservation forms
of the continuity equation. Note an error in Figure 2.6: Dp/Dt should be
replace with Dp/Dt.

Read Section 2.5.5
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