

Computational Fluid Dynamics	(AE/ME 339)	K. M. Isaac
Pressure Correction Method		MAEEM Dept., UMR
Pressure c	orrection metho	<u>d (6.8)</u>
Relaxation method is well	known for solving o	elliptic equations.
t is an iterative procedure.		
Many flow problems are el	liptic-parabolic in r	nature.
Pressure correction techniq	ues have been deve	eloped for such flows.
Patankar and Spalding deve	eloped the SIMPLE	E (Semi-Implicit Method
for <u>P</u> ressure- <u>L</u> inked <u>Eq</u> uati	ons) algorithm whi	ch uses pressure correction
nethod.		

computational Fluid D ressure Correction M	ynamics (AE/ME 339) ethod	K. M. Isaac MAEEM Dept., UMR
Continuity Equ	ation for incompressible flo	w: $\overline{\nabla} \cdot \overline{V} = 0$
Ť	$\overline{\nabla} \cdot \overline{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$	(6.72)
$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + 2\mu$	$u\frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial u}{\partial z} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x}\right) + \mu \frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\right) + \mu \partial$	$\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) + \rho f_x$ (6.69)
$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \mu v$	$\frac{\partial}{\partial x} \left(\frac{\partial \mathbf{v}}{\partial x} + \frac{\partial u}{\partial y} \right) + 2\mu \frac{\partial^2 \mathbf{v}}{\partial y^2} + \mu \frac{\partial}{\partial z} \left(\frac{\partial^2 \mathbf{v}}{\partial x} + \frac{\partial^2 \mathbf{v}}{\partial y} \right)$	$\frac{\partial \mathbf{v}}{\partial z} + \frac{\partial w}{\partial y} \bigg] + \rho f_y \dots \dots$
$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \mu$	$\frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) + \mu \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right)$	$+2\mu\frac{\partial^2 w}{\partial z^2}+\rho f_z$ (6.71)
10/4/2005	Topic9_PresCorr_1	

Computational Fluid Dynamics (AE/ME 339)K. M. Isaac
MAEEM Dept., UMR
$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y} - \frac{\partial w}{\partial z}$$
Differentiate w.r.t. x $\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 v}{\partial y \partial x} - \frac{\partial^2 w}{\partial z \partial x}$ Add $\frac{\partial^2 u}{\partial x^2}$ on both sides of the above equation and
and multiply by μ throughout to get the following $2\mu \frac{\partial^2 u}{\partial x^2} = \mu \frac{\partial^2 u}{\partial x^2} - \mu \frac{\partial^2 v}{\partial y \partial x} - \mu \frac{\partial^2 w}{\partial z \partial x}$ 1042005

Computational Fluid Dynamics (AE/	′ME 339)	K. M. Isaac
Pressure Correction Method		MAEEM Dept., UMR
Substitute in Eq. 6.69 for the 2 ^r	nd term on the RH	S using the above to get
the following after expanding f	he terms and can	coling terms (next slide)
the following after expanding t	ne terms and can	cening terms (next sinde)
10/4/2007		
10/4/2005	Tonicu PresCorr 1	

Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac
Pressure Correction	Method	MAEEM Dept., UMR
After performing t	he manipulations described in	n Section 6.8.1, we get the
equations in the ro	nowing form, where note that	l.
	$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$	
Ň	$\overline{\overline{Z}} \cdot \overline{V} = 0(6)$.77)
$ \rho \frac{Du}{Dt} $	$= -\frac{\partial p}{\partial x} + \mu \nabla^2 u + \rho f_x$	(6.78)
$ \rho \frac{Dv}{Dt} $	$= -\frac{\partial p}{\partial y} + \mu \nabla^2 \mathbf{v} + \rho f_y$	(6.79)
$\rho \frac{Dw}{Dt}$	$= -\frac{\partial p}{\partial z} + \mu \nabla^2 w + \rho f_z$	(6.80)
10/4/2005	Topic9 PresCorr 1	б

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
Pressure Correction Method	MAEEM Dept., UMR
In the channel and the descendent model.	
In the above equations, the dependent variable	es are u, v, w, and p.
Note that the energy equation is not present in	n the set.
This is a consequence of assuming $\rho = \text{consta}$	ant and $\mu = \text{constant}$.
The energy equation is decoupled from the co	ontinuity and momentum
equations, and it needs to be solved only for r	non-isothermal cases.
Solution techniques developed for compressi	ble flows are not
suitable for incompressible flows. Why?	
Let us examine the stability criterion of Tann	hehill, Anderson and
Pletcher (Computational Fluid Flow and Heat	at Transfer, 2 nd Edition,
McGraw-Hill).	

Computational Fluid Dyna	mics (AE/ME 339)	K. M. Isaac
Pressure Correction Metho	bd	MAEEM Dept., UMR
Substitution shows that	the velocity pattern show	vn in Fig. 6.13 (see next
bage) satisfies Eq. 6.83.		
Yet a real flow field wo	uld not behave in such a	physically unrealistic
nanner.		

Computational Fluid Dynamics (AE/ME 33	39) K. M. Isaac
Pressure Correction Method	MAEEM Dept., UMR
Note the zig zeg distributions of he	the the world wy value it was a supported
in Figure 6.13 would satisfy the cer equation.	that difference form of the continuity
-	
Zig-zag pressure distribution is seen form of first derivative would show	i in Figure 6.14. Central difference zero pressure gradient for this
distribution.	

Computational Fluid Dyna	mics (AE/ME 339)	K. M. Isaac
Pressure Correction Metho	d	MAEEM Dept., UMR
Now consider the press	ure gradient terms in th	ne momentum equation
$\frac{\partial p}{\partial t} = \frac{p_{i+1,j}}{t}$	$-p_{i-1,j}$	
∂x 24	Ax	
$\partial p _ p_{i,j+1}$ -	$- p_{i,j-1}$	
$\frac{\partial y}{\partial y} = \frac{1}{24}$	Ay	
These equations yield	$\frac{\partial p}{\partial x} = 0, \frac{\partial p}{\partial y} = 0$	
or the zig-zag pressure	e distribution of Fig. 6.	14.
Numerical solution wil	l yield a uniform press	ure field, washing
out the actual distribution	on.	
Conclusion: Mere CD	formulation may not be	e suitable for incompressible

Computational Fluid Dyr	namics (AE/ME 339)	K. M. Isaac
Pressure Correction Met	hod	MAEEM Dept., UMR
In this method, the p	ressure are calculated at t	he grid points
(i-1, j), (i, j), (i+1, j),	(i, j+1), (i, j-1), etc., show	wn as solid circles.
The velocities are cal	culated at (i-1/2, j), (i+1/	2, j), (i, j+1/2), (i, j-1/2),
etc.		
Because of using the	staggered grid, oscillatio	ns often wash out.
Much of the benefits	of using staggered grid h	ave been discovered
Much of the benefits in applications, even	of using staggered grid h though theoretical explan	ave been discovered nations often fall short.
Much of the benefits n applications, even The continuity equati	of using staggered grid h though theoretical explan ton becomes	ave been discovered nations often fall short.
Much of the benefits in applications, even The continuity equation $\frac{u_{i+1/2,j} - u_{i-1/2,j}}{\Delta x} + \frac{u_{i+1/2,j}}{\Delta x} + u_{i$	of using staggered grid h though theoretical explanation becomes $-\frac{v_{i,j+1/2} - v_{i,j-1/2}}{\Delta y} = 0$	have been discovered hations often fall short.

Computational Fluid Dynamics (AE/	/ME 339)	K. M. Isaac
Pressure Correction Method		MAEEM Dept., UMF
Adjacent velocity points are use	ed in the continuit	y equation, also leading
to less oscillations.		

Computational Fluid I	Dynamics (AE/ME 339)	K. M. Isaac
Pressure Correction N	lethod	MAEEM Dept., UMR
<u>U</u>	nderlying Rationale (6.8.3)	2
Uses an iterative pr	ocedure and uses some inte	resting heuristic reasoning
for the iteration pro	cedure. The following steps	s are involved.
1. Guess a pressure	field, p*.	
2. Solve momentum	n equations for u*, v*, w* u	ising p*.
3. Use the velocity	field from Step 2 to calcula	te a pressure correction p'.
The corrected pre	essure $p = p^* + p'$.	
4. Calculate velocit	y corrections u', v' and w'	using p.'
i.e., $u = u^* + u^2$, et	c.	
5. Replace p* in Ste	ep 1 with p, and repeat Step	os 2-4 till the velocity field
does satisfy the c	ontinuity equation.	
0/4/2005	Topic9_PresCorr_1	1