

Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
he Navier-Stokes sing the boundary	equations derived in Chapter layer assumptions.	2 can be simplified
$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} =$	0(1)	
$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} +$	$v\frac{\partial u}{\partial y} = g_x \beta (T - T_\infty) + v\frac{\partial^2}{\partial y}$	$\frac{v^2 u}{v^2}$ (5)
$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x}$	$\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial y^2}$	
$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x}$	$\frac{\partial T}{\partial y} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} \dots$	(6)
0/11/2005	topic11 heated flow	

Computational Fluid Dynamics (AE/ME 339)		K. M. Isaac MAEEM Dept., UMR	
Note th	e neglected terms in the above equatior	15	
Eq. 2:	2^{nd} derivative of u w.r.t x is neglected because it is small compared to the other term.		
	Pressure gradient is assumed to be zero.		
Eq. 3:	This equation is not solved in the present formulation All the terms on the RHS are assumed to be zero. Since p is assumed to be a constant, there is no need to use this equation.		
Eq. 4:	2 nd derivative of temperature w.r.t x a terms are neglected.	nd the viscous dissipation	
10/11/200	5 topic l 1_heated_flow		

Computational Fluid Dynamics (AE/ME 339)		K. M. Isaac MAEEM Dept., UMR
The simplified ec non-dimensional	quations (continuity, x-momentur ized as follows:	n and energy) can be
	$\xi = x(g\beta\Delta T/\nu^2)^{\frac{1}{3}}$	
	$\eta = y(g\beta\Delta T/v^2)^{\frac{1}{3}}$	
	$\tau = t(g\beta\Delta T)^{\frac{2}{3}}/\nu^{\frac{1}{3}}$	
	$\overline{u} = u / (v g \beta \Delta T)^{\frac{1}{3}}$	
	$\overline{\mathbf{v}} = \mathbf{v} / \left(\nu g \beta \Delta T \right)^{\frac{1}{3}}$	
	$\theta = \frac{T - T_{\infty}}{T_1 - T_{\infty}} = \frac{T - T_{\infty}}{\Delta T}$	
10/11/2005	topic11_heated_flow	8

Computational Fluid Dyn	amics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
The continuity equation	on becomes	
$rac{\overline{u}_{_{i,j}}^{_{n+1}}-\overline{u}_{_{i-1,j}}^{_{n+1}}}{\Delta\xi}$ H	$\frac{\overline{\mathbf{v}}_{i,j}^{n+1} - \overline{\mathbf{v}}_{i,j-1}^{n+1}}{\Delta \eta} = 0.\dots$	(9)
Equations 7, 8 and 9 a Note that θ^{n+1} is know	re solved sequentially for n once the energy equat	or each time step. ion is solved.
Therefore, in the mom quantity.	entum equation, it can b	be treated as a known
Since u is known fron are the only unknown	n solving the x-momentu s in Eq. (9).	im equation, v^{n+1}
Thus these set of equa	tions can be solved expl	licitly.
0/11/2005	topic11_heated_flow	1