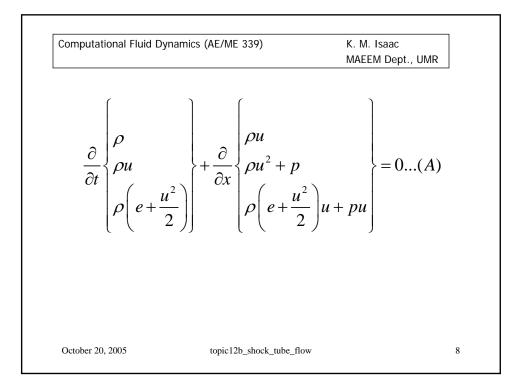

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Basic parameter of the shock tube is the diaphragm pressure ration p4/p1.	Driver section time r = 0 High pressure, p ₁ Low pressure, p ₁ (a) Dupfregm iime r = 0 iime r = 0
The two chambers may be at different temperatures, T1 and T4, and may contain differentgases having different gas constants, R1 and R4.	(b) Expension wave propagating to the left contact Normal block wave propagating to the left contact Normal block wave propagating to the right (c)
At the instant when the diaphragm is broken, the pressure distribution is a step function. It then splits into a shock and an expansion fan as shown in the figure.	$(0) \qquad \qquad$
October 20, 2005 topic12b shock tub	FIG. 11.5


Computational Fluid Dynamics	(AE/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
The shock propagates into t	he expansion char	nber with speed Vshock
An expansion wave propaga speed a4 at its front.	-	-
Condition of the shock trave that traversed by the expans	•	•
The interface between Regi	ons 2 and 3 is call	ed the <i>contact surface</i> .
It marks the boundary betwo separated by the diaphragm of a piston driving into the l	een the fluids which The contact surfa	ch were originally device is like the front
The interface between Regis It marks the boundary between separated by the diaphragm of a piston driving into the l front ahead of it.	een the fluids which The contact surfa	ch were originally device is like the front

Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
The following cor	nditions apply on either side of	of the contact surface
and	$p_2 = p_3$	
	$u_2 = u_3$	
-	densities will be different in nditions are used to determin on strength p_2/p_1 .	•
The above two co	nditions are used to determin	•
The above two co	nditions are used to determin	•

