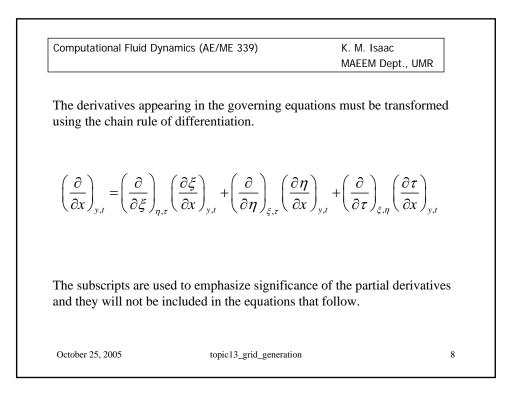
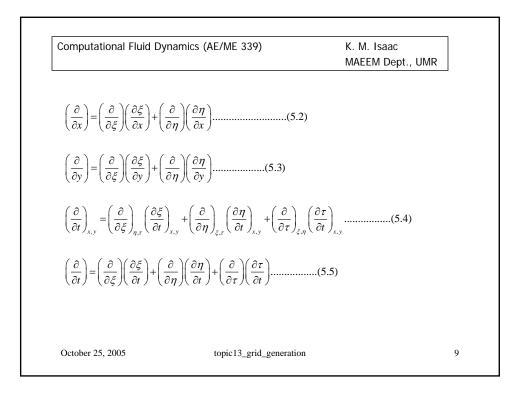
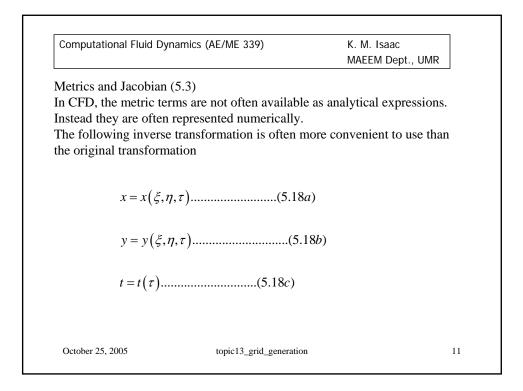
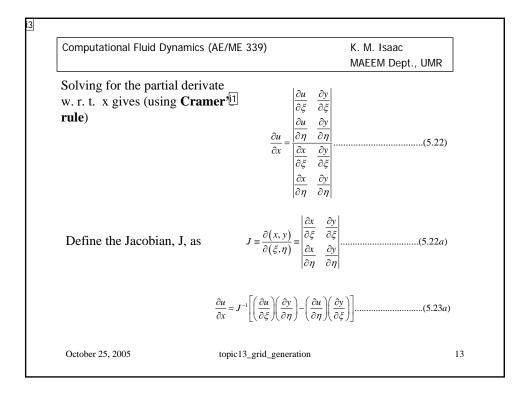
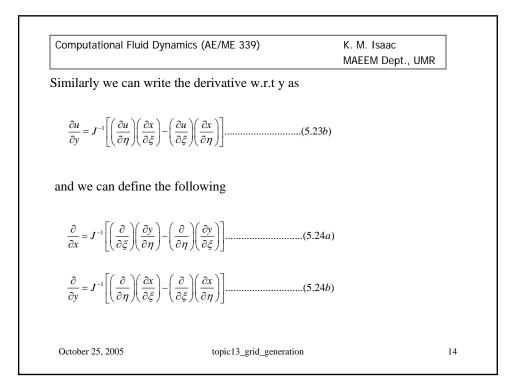

Computational Fluid Dy	namics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
	Grid Generation (Ch	napter 5)
	d grid generation is the cr ysical space and the comp	eation of the transformation putational space.
These laws are know	on as the <u>metrics</u> of the tra	insformation.
for the flow over a h	eated wall when we used his was simply a transform	eration without realizing it the τ , ξ , η coordinates for the mation from one rectangular
domain to another re		
domain to another re		


Computational Fluid Dynamics (AE/ME	339)	K. M. Isaac	
		MAEEM Dept., UMR	
Grid Gener	ration (Chapt	ter 5)	
Quality of the CFD solution is stronger	ongly depende	ent on the quality of the	
Why is grid generation necessary	? Figure 5.1(n	ext slide) can be used to	
Note that the standard finite differ spaced rectangular grid.	ence methods	require a uniformly	
If a rectangular grid is used, few g	grid points fall	on the surface.	
Flow close to the surface being ve	ery important i	in terms of forces ,	
heat transfer, etc., a rectangular g	grid will give	poor results in such	
regions.			
Also uniform grid spacing often d	oes not yield	accurate solutions.	
Typically, the grid will be closely	spaced in bou	indary layers.	
October 25, 2005 topic1	3 grid generation		

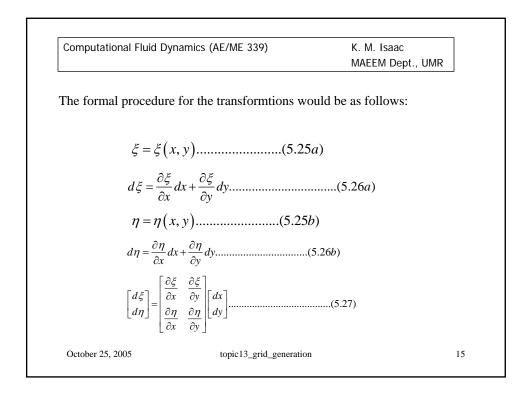


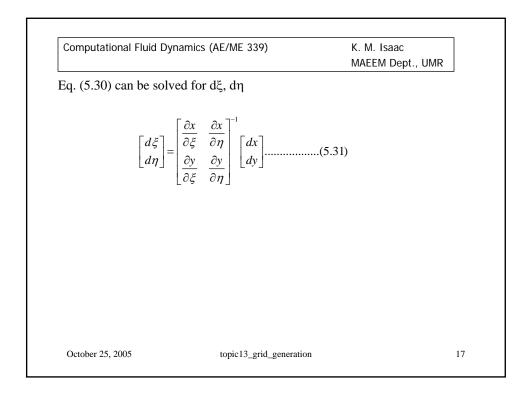

Computational Fluid Dynam	amics (AE/ME 339)	K. M. Isaac
		MAEEM Dept., UMR
Note:		
in the physical space t	he cells are not rectangu	lar and the grid
is not uniformly spaced	1.	-
	Each point in the comput	the physical space and the ational space represents
The procedure is as fol	lows:	
1. Establish the necessa space and the com	•	ons between the physical
2. Transform the gover the computational	0 1	ooundary conditions into
3. Solve the equations spaced rectangular	in the computational space grid.	ace using the uniformly
4. Perform a reverse tra in the physica	ansformation to represen l space.	t the flow properties
October 25, 2005	topic13 grid generation	n

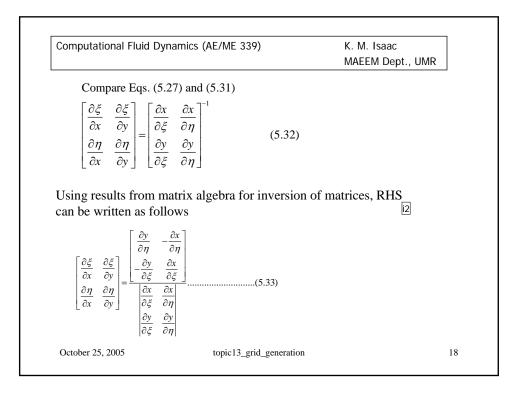




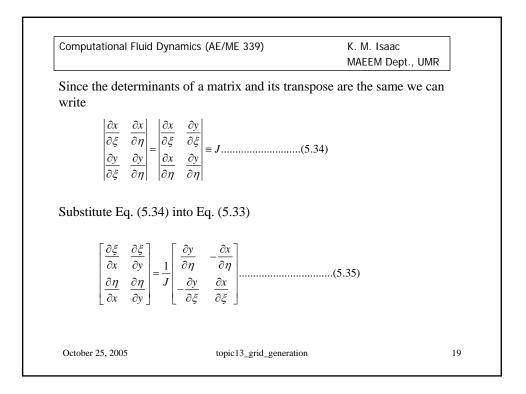
Computational Fluid Dy	namics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
The first derivatives in Eqs. (5.2), (5.3) and (n the governing equations can 5.5).	n be transformed using
The coefficients of the below are known <i>met</i> .	e transformed derivatives suc rics.	h as the ones given
	$\frac{\partial \xi}{\partial x}, \ \frac{\partial \xi}{\partial y}, \ \frac{\partial \eta}{\partial x}, \ \frac{\partial \eta}{\partial y}$	
Similarly, chain rule s Example:	hould be used to transform h	igher order derivatives.
$\frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial \xi}\right) \left(\frac{\partial}{\partial \xi}\right)$	$\left(\frac{\partial \xi}{\partial \eta}\right) + \left(\frac{\partial}{\partial \eta}\right) \left(\frac{\partial^2 \eta}{\partial x^2}\right) + \left(\frac{\partial^2}{\partial \xi^2}\right) \left(\frac{\partial \xi}{\partial x}\right)^2$	
$+\left(\frac{\partial}{\partial r}\right)$	$\frac{\partial^2}{\partial r^2}\left(\frac{\partial \eta}{\partial x}\right)^2 + 2\left(\frac{\partial^2}{\partial \eta \partial \xi}\right)\left(\frac{\partial \eta}{\partial x}\right)\left(\frac{\partial \xi}{\partial x}\right)$	(5.9)
October 25, 2005	topic13_grid_generation	10

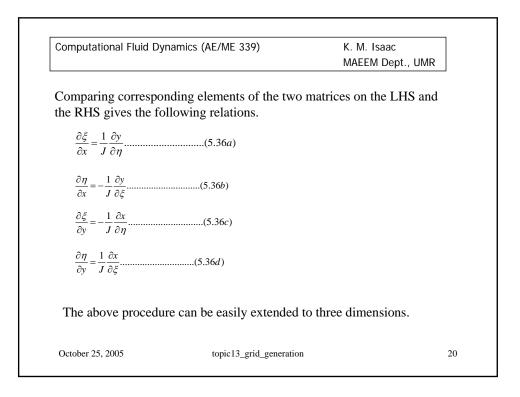

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Let $x = x(\xi, \eta)$, $y = y(\xi, \eta)$ and $u = u(x, y)$. then we can write	
$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$	(5.19)
$\frac{\partial u}{\partial \xi} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \xi} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \xi} \dots$	(5.20)
$\frac{\partial u}{\partial \eta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \eta} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \eta} \dots$	(5.21)
Eqs. (5.21) and (5.22) are two equations for	the two unknown derivatives.
October 25, 2005 topic13_grid_generation	on 12




Slide 13

- Cramer's Rule: The solution vector x of a system of linear equations Ax = c with the regular matrix of coefficients A is uniquely determined by:
 x_i = Det A_i/Det A.
 Where A_i denotes the matrix obtained from the coefficient matrix A by replacing the ith column by the vector of constants c.
 Not efficient for systems with more than 3 equations.
 isaac, 11/1/2003
- i3 isaac, 10/27/2004




Computational Fluid Dyr	namics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Similarly		
$x = x(\xi, t)$	η)(5.2	28 <i>a</i>)
$y=y\bigl(\xi,$	η)(5.	28b)
$dx = \frac{\partial x}{\partial \xi} d\xi$	$+\frac{\partial x}{\partial \eta}d\eta$ (5.1)	29 <i>a</i>)
$dy = \frac{\partial y}{\partial \xi} d\xi$	$f + \frac{\partial y}{\partial \eta} d\eta$ (5)	5.29 <i>b</i>)
$\begin{bmatrix} dx \\ dy \end{bmatrix}$	$= \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} d\xi \\ d\eta \end{bmatrix} \dots $	5.30)
October 25, 2005	topic13_grid_generation	16

i2 Replace matrix elements by the determinants of the complementary matrices, following the alternating sign rule and transpose. And divide by the determinant of the original matrix.

