

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Algebraic Methods

Known functions are used to map irregular physical domain into rectangular computational domains.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Example: Grid stretching may be necessary for some problems such as flow with boundary layers.
Let us consider the transformation:
$\xi=x_{\ldots} . . .(5.50 a)$
$\eta=\ln (y+1) \ldots .(5.50 b)$
Inverse transformation

$$
\begin{aligned}
& x=\xi \ldots . .(5.51 a) \\
& y=\exp (\eta)-1 \ldots .(5.51 b)
\end{aligned}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR

The following metrics are used in the transformation

$$
\begin{array}{rlrl}
\frac{\partial \xi}{\partial x} & =1, & \frac{\partial \xi}{\partial y}=0 \\
\frac{\partial \eta}{\partial x} & =0, & \frac{\partial \eta}{\partial y}=\frac{1}{1+y} \\
x_{\xi} & =1, & y_{\xi}=0 \\
x_{\eta} & =0, & y_{\eta} & =e^{\eta}
\end{array}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

The relation (Eq. 5.52) given below hold between increments Δy and $\Delta \eta$

$$
\begin{align*}
& \frac{d y}{d \eta}=e^{\eta} \\
& d y=e^{\eta} d \eta \\
& \quad \Delta y=e^{\eta} \Delta \eta \tag{5.52}
\end{align*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR

Therefore as η increases, Δy increases exponentially.
Thus we can choose $\Delta \eta$ constant and still have an exponential stretching of the grid in the y-direction.

Transform the continuity equation as follows

$$
\begin{align*}
& \frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho \mathrm{v})}{\partial y}=0 \ldots(5.53) \tag{5.53}\\
& \frac{\partial(\rho u)}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial(\rho u)}{\partial \eta} \frac{\partial \eta}{\partial x}+\frac{\partial(\rho \mathrm{v})}{\partial \xi} \frac{\partial \xi}{\partial y}+\frac{\partial(\rho \mathrm{v})}{\partial \eta} \frac{\partial \eta}{\partial y}=0 . . \tag{5.54}
\end{align*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Substitute for the derivatives in Eq. (5.54) to get
$\frac{\partial(\rho \mathrm{u})}{\partial \xi}+\frac{1}{1+y} \frac{\partial(\rho \mathrm{v})}{\partial \eta}=0$
$\frac{\partial(\rho u)}{\partial \xi}+\frac{1}{e^{\eta}} \frac{\partial(\rho \mathrm{v})}{\partial \eta}=0$
$e^{\eta} \frac{\partial(\rho u)}{\partial \xi}+\frac{\partial(\rho \mathrm{v})}{\partial \eta}=0$

Eq. (5.57) is the continuity equation in the computational domain. Thus we have transformed the continuity equation from the physical space to the computational space.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Boundary Fitted Coordinate System (5.7)

Here we consider the flow through a divergent duct as given in Figure 5.6 (next slide). de is the curved upper wall and $f g$ is the centerline.
Let $y_{s}=f(x)$ be the function that represents the upper wall.
The following transformation will give rise to a rectangular grid.

$$
\begin{equation*}
\xi=x \tag{5.65}
\end{equation*}
$$

$$
\eta=y / y_{s}
$$

To test this choose $y_{s}=1.5 x$ and let x vary from 1 to 5 .
At $\mathrm{x}=1, \xi=1, \eta_{\max }=1$, and $\mathrm{x}=5, \xi=5, \eta_{\max }=1$.
Thus the irregular domain is transformed into into a rectangular domain.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Case where the
Nozzle wall is curved

FIG. 5.6
A simple boundary-fited coordinate system. (a) Physical plane; (b) computational plane.

```
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac
MAEEM Dept., UMR
```

Example:
$y_{s}=x^{2} \ldots \ldots .1 \leq x \leq 2$
$\xi=x$
$\eta=\frac{y}{y_{s}}=\frac{y}{x^{2}}$
$\frac{\partial \xi}{\partial x}=1, \quad \frac{\partial \xi}{\partial y}=0$
$\frac{\partial \eta}{\partial x}=-2 \frac{y}{x^{3}}=-2 \frac{\eta}{x}=-2 \frac{\eta}{\xi}$
$\frac{\partial \eta}{\partial y}=\frac{1}{x^{2}}=\frac{1}{\xi^{2}}$

Na, 58 s.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

The above formulation is analytic
Could also be obtained using central differencing if analytic expressions are not available

$$
\frac{\partial(\xi, \eta)}{\partial(x, y)} \equiv J \equiv\left|\begin{array}{ll}
\frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y}
\end{array}\right| \equiv \xi_{x} \eta_{y}-\xi_{y} \eta_{x}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Divide the domain into 4 segments each in the ξ and η directions
Therefore, $\Delta \xi=0.25$ and $\Delta \eta=0.25$
Consider a point in the domain where we have $\xi=1.75, \eta=0.75$
Let us calculate η_{x} analytically and numerically.
At this point:

$$
\begin{aligned}
& x=1.75 \\
& y=\eta y_{s}=\eta x^{2}=0.75 \times(1.75)^{2}=2.29688 \\
& \eta=\frac{y}{x^{2}}
\end{aligned}
$$

Analytical:
$\eta_{x}=-2 \frac{y}{x^{3}}=-2 \frac{\eta}{\xi}=-2 \times \frac{0.75}{1.75}=-0.85715$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Numerical calculation using central differencing.
First calculate y at $\eta=0.5$ and 1.0

$$
\begin{aligned}
& y_{\eta}=\frac{\Delta y}{2 \Delta \eta}=\frac{y_{s} \eta_{j+1}-y_{s} \eta_{j-1}}{2 \Delta \eta}= \\
& \frac{1.75^{2} \times 1.0-1.75^{2} \times 0.5}{2 \times 0.25}=\frac{3.0625-1.53125}{2 \times 0.25}=3.0625 \\
& J=x_{\xi} y_{\eta}-y_{\xi} x_{\eta}=1 \times 3.0625-y_{\xi} \times 0=3.0625 \\
& \xi=1.5: y=y_{s} \eta=2.25 \times 0.75=1.6875 \\
& \xi=2: y=y_{s} \eta=4 \times 0.75=3.0
\end{aligned}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR

Numerically calculate the derivatives using CD
$y_{\xi}=\frac{\Delta y}{\Delta \xi}=\frac{3.0-1.6875}{2.0-1.5}=2.625$

Using Eq. (5.35)
$\eta_{x}=-\frac{y_{\xi}}{J}=-\frac{2.625}{3.0625}=-0.85714$

$$
\left[\begin{array}{cc}
\frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\
\frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y}
\end{array}\right]=\frac{1}{J}\left[\begin{array}{cc}
\frac{\partial y}{\partial \eta} & -\frac{\partial x}{\partial \eta} \\
-\frac{\partial y}{\partial \xi} & \frac{\partial x}{\partial \xi}
\end{array}\right] \ldots . .(5.35)
$$

