

Computational Fluid Dynam	nics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Bernoulli's equation		
p + (1/2)	$\rho V^2 = p_\infty + (1/2)\rho U_\infty^2$	
$\therefore C_p = 1 -$	$-\left(\frac{V}{U_{\infty}}\right)^2$	
Recall		
$V^2 =$	$u_r^2 + u_{\theta}^2$	
15 November 2005	topic16_cylinder_flow01	

Computational Fluid Dynamics (AE/M	E 339) K. M. Isaac MAEEM Dept., UMR
These transformations can be checked by applying them to Laplace's equation, which in polar coordinates is given by	$\frac{\partial x}{\partial r} = \cos(\theta), \frac{\partial^2 x}{\partial r^2} = 0$
$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} = 0(1)$	$\frac{\partial x}{\partial \theta} = -r\sin(\theta), \frac{\partial^2 x}{\partial \theta^2} = -r\cos(\theta)$ $\frac{\partial y}{\partial r} = \sin(\theta), \frac{\partial^2 y}{\partial r^2} = 0$ $\frac{\partial y}{\partial r} = r\cos(\theta), \frac{\partial^2 y}{\partial r^2} = -r\sin(\theta)$
15 Narankar 2005 (m. 1	$\partial \theta$ $\partial \theta^2$ $\partial \theta^2$

Computational Fluid Dyn	amics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
For this problem the t the original equation is Also since the flow is only one half of the fl	ransformation $\sigma = 1/r$ can in terms of σ . symmetric about $\theta = 0$ how domain.	n be used to transform ine, we need to solve

