

AE/ME 339
 Computational Fluid Dynamics (CFD)

K. M. Isaac

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Burger's Equation

(Ref. Tannehill, Anderson and Pletcher, Computational Fluid Mechanics and Heat Transfer, Sect, 4.4, 1997)
It is a model equation used to test finite difference techniques Inviscid and viscous forms can be used
Has a time dependent term, non-linear term similar to the convection term, and a viscous dissipation term

$$
\begin{equation*}
\underbrace{\frac{\partial u}{\partial t}}_{\text {time-dependent term }}+\underbrace{u \frac{\partial u}{\partial x}}_{\substack{\text { convection } \\ \text { term }}}=\underbrace{v \frac{\partial^{2} u}{\partial x^{2}}}_{\substack{\text { viscous diffusion } \\ \text { term }}} \tag{1}
\end{equation*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Equation (1) is parabolic when the viscous dissipation term is included. When the RHS term $=0$, the equation is hyperbolic, which gives the following inviscid form.

Inviscid form

Equation 2 can be thought of as the non-linear wave equation, where each point on the wave can propagate with a different speed leading to the formation of shock waves.
Shock formation is a non-linear phenomenon.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Linear wave equation

term
term
Governs propagation of acoustic waves (linearized shock waves) where a is the constant wave propagation speed (speed of sound)

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Traveling Discontinuity (shock propagation)
Problem for Burger’s Equation.
Consider the initial data shown below

12/6/2005

It can be shown that the discontinuity travels with the speed (Tannehill et al., 1997)

$$
\begin{equation*}
u=\frac{d x}{d t}=\frac{u_{1}+u_{2}}{2} \tag{6}
\end{equation*}
$$

See Figure 1 (previous slide).

```
Computational Fluid Dynamics (AE/ME 339)
K. M. Isaac
MAEEM Dept., UMR
```

Consider a different initial data $u(x, 0)$ shown in Figure 2.
The solution will show centered expansion
The characteristic equation is given by

$$
\begin{equation*}
\frac{d t}{d x}=\frac{1}{u} \tag{7}
\end{equation*}
$$

Figure 1.

12/6/2005

7

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Figure 2. Solution at $\mathrm{t}=0$ and $\mathrm{t}>0$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR

Figure 1 shows the characteristic diagram
plotted in the (x, t) space.
Bounded by the $\mathrm{x}=0$ (vertical) line and the characteristic denoted by the dashed line.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Solution can be written as
$u=0 \quad x \leq 0$
$u=\frac{x}{t} \quad 0<x<u_{0} t \quad$ (recall: $\frac{d t}{d x}=\frac{1}{u_{0}}$)
$u=u_{0} \quad x \geq u_{0} t$


```
Computational Fluid Dynamics (AE/ME 339)
```

The initial distribution of u results in a centered expansion where the width of the expansion grows linearly with time.

The above solutions can now be used to evaluate finite difference algorithms.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Beam and Warming method

 Outline1. Write Taylor series for u_{j}^{n+1} about u_{j}^{n} and u_{j}^{n} about u_{j}^{n+1}
2. Subtract the second from the first
3. Write Taylor Series for $\left(\mathrm{u}_{\mathrm{tt}}\right)_{j}^{n+1}$ and substitute in Eq. (10)
4. Replace u_{t} with $-\mathrm{au}_{\mathrm{x}}$
5. Use central difference for u_{x} on the RHS
6. Drop third order terms

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Beam-Warming Method (Beam and Warming, 1976)
Let us consider the following equation
$\frac{\partial u}{\partial t}+\frac{\partial F(u)}{\partial x}=0$
where $F=F(u)$
Rewrite as $\frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}=0$
where $A=\frac{\partial F}{\partial u}$
Equation (3) could represent a vector
in which case $A=\frac{\partial F_{i}}{\partial u_{j}}$ is the Jacobian matrix

Consider the the following two Taylor series expansions
$u_{j}^{n+1}=u_{j}^{n}+\Delta t\left(u_{t}\right)_{j}^{n}+\frac{(\Delta t)^{2}}{2}\left(u_{t t}\right)_{j}^{n}+\frac{(\Delta t)^{3}}{6}\left(u_{t t}\right)_{j}^{n}+\ldots$
$u_{j}^{n}=u_{j}^{n+1}-\Delta t\left(u_{t}\right)_{j}^{n+1}+\frac{(\Delta t)^{2}}{2}\left(u_{t t}\right)_{j}^{n+1}-\frac{(\Delta t)^{3}}{6}\left(u_{t t}\right)_{j}^{n+1}+\ldots$
Subtract Equation (9) from Equation (8)
$u_{j}^{n+1}-u_{j}^{n}=u_{j}^{n}-u_{j}^{n+1}+\Delta t\left\{\left(u_{t}\right)_{j}^{n}+\left(u_{t}\right)_{j}^{n+1}\right\}+$

$$
\begin{equation*}
\frac{(\Delta t)^{2}}{2}\left\{\left(u_{t t}\right)_{j}^{n}-\left(u_{t t}\right)_{j}^{n+1}\right\}+O\left[(\Delta t)^{3}\right] \tag{10}
\end{equation*}
$$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

$\left(u_{t t}\right)_{j}^{n+1}$ can be substituted in Eq. (10) using the following
Taylor series expansion
$\left(u_{t t}\right)_{j}^{n+1}=\left(u_{t t}\right)_{j}^{n}+\Delta t\left(u_{t t}\right)_{j}^{n}+\ldots$
Eq. (10) becomes
$2 u_{j}^{n+1}=2 u_{j}^{n}+\Delta t\left\{\left(u_{t}\right)_{j}^{n}+\left(u_{t}\right)_{j}^{n+1}\right\}+$

$$
\begin{equation*}
\frac{(\Delta t)^{2}}{2}\left\{\left(u_{t t}\right)_{j}^{n}-\left(u_{t t}\right)_{j}^{n}-\Delta t\left(u_{t t}\right)_{j}^{n}\right\}+O\left[(\Delta t)^{3}\right] \tag{12}
\end{equation*}
$$

Which reduces to
$u_{j}^{n+1}=u_{j}^{n}+\frac{\Delta t}{2}\left\{\left(u_{t}\right)_{j}^{n}+\left(u_{t}\right)_{j}^{n+1}\right\}+O\left[(\Delta t)^{3}\right]$

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Now we substitute the wave equation $u_{t}=-a u_{x}$ to get the following

$$
\begin{equation*}
u_{j}^{n+1}=u_{j}^{n}-\frac{a \Delta t}{2}\left\{\left(u_{x}\right)_{j}^{n}+\left(u_{x}\right)_{j}^{n+1}\right\}+O\left[(\Delta t)^{3}\right] \tag{14}
\end{equation*}
$$

and now replace the u_{x} terms by 2nd order central differences

$$
\begin{array}{r}
u_{j}^{n+1}=u_{j}^{n}-\frac{a \Delta t}{4}\left\{\left(u_{x}\right)_{j+1}^{n}-\left(u_{x}\right)_{j-1}^{n}+\left(u_{x}\right)_{j+1}^{n+1}-\left(u_{x}\right)_{j-1}^{n+1}\right\}+ \\
O\left[(\Delta t)^{3}\right] \tag{15}
\end{array}
$$

```
Computational Fluid Dynamics (AE/ME 339)
```

The method is $2^{\text {nd }}$ order accurate $\left(\varepsilon=\mathrm{O}\left[(\Delta \mathrm{t})^{2},(\Delta \mathrm{x})^{2}\right]\right)$ and unconditionally stable for all time steps.
A tridiagonal system must be solved for each time step.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Summary

1. Write Taylor series for u_{j}^{n+1} about u_{j}^{n} and u_{j}^{n} about u_{j}^{n+1}
2. Subtract the second from the first
3. Write Taylor Series for $\left(\mathrm{u}_{\mathrm{tt}}\right)_{j}^{n+1}$ and substitute in Eq. (10)
4. Replace u_{t} with $-\mathrm{au}_{\mathrm{x}}$
5. Use central difference for u_{x} on the RHS
6. Drop third order terms

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR

The Beam-Warming method can now be applied to the inviscid Burger's equation

Substituting in Eq. (14) using Eq. (3) gives
$u_{j}^{n+1}=u_{j}^{n}-\frac{\Delta t}{2}\left\{\left(\frac{\partial F}{\partial x}\right)^{n}+\left(\frac{\partial F}{\partial x}\right)^{n+1}\right\}$
The above is a non-linear problem since $F=F(u)$.
Linearization or iteration is therefore necessary
Beam and Warming (1976) suggested the following
$F^{n+1} \approx F^{n}+\left(\frac{\partial F}{\partial u}\right)^{n}\left(u^{n+1}-u^{n}\right)=F^{n}+A^{n}\left(u^{n+1}-u^{n}\right)$
$u_{j}^{n+1}=u_{j}^{n}-\frac{\Delta t}{2}\left\{2\left(\frac{\partial F}{\partial x}\right)^{n}+\frac{\partial}{\partial x}\left[A^{n}\left(u^{n+1}-u^{n}\right)\right]\right\}$

Replacing the x -derivatives using 2nd order CD would yield the following

$$
\begin{align*}
& -\frac{1}{4} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} A_{j-1}^{n} u_{j-1}^{n+1}+u_{j}^{n+1}+\frac{1}{4} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} A_{j+1}^{n} u_{j+1}^{n+1}= \\
& \quad-\frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} \frac{F_{j+1}^{n}-F_{j-1}^{n}}{2}-\frac{1}{4} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} A_{j-1}^{n} u_{j-1}^{n}+u_{j}^{n}+\frac{1}{4} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} A_{j+1}^{n} u_{j+1}^{n} \tag{18}
\end{align*}
$$

The Jacobian A has a single element for the Burger's equation.
Eq. (18) represents linear tridiagonal system.
Solution by Thomas algorithm is feasible.

Beam and Warming suggests the following explicit artificial viscosity term

$$
\begin{equation*}
\mathrm{D}=-\frac{\omega}{8}\left(u_{j+2}^{n}+u_{j+1}^{n}+u_{j}^{n}+u_{j-1}^{n}+u_{j-2}^{n}\right) \tag{19}
\end{equation*}
$$

Recommended values of ω lie in the range

$$
0 \leq \omega \leq 1
$$

Delta Form

Sometimes it is better to write the equation for change in the variable from time level n to $(\mathrm{n}+1)$. Define $\Delta u_{j}=u_{j}^{n+1}-u_{j}^{n}$. Eq. (18) then becomes $-\frac{1}{4} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} A_{j-1}^{n} \Delta u_{j-1}+\Delta u_{j}+\frac{1}{4} \frac{\Delta \mathrm{t}}{\Delta \mathrm{x}} A_{j+1}^{n} \Delta u_{j+1}=$

$$
\begin{equation*}
-\frac{\Delta t}{\Delta \mathrm{x}} \frac{F_{j+1}^{n}-F_{j-1}^{n}}{2} \tag{20}
\end{equation*}
$$

The delta form reduces the number of arithmatic operations since the RHS has only one term. Also round-off error will be smaller in this case.

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR

Some Examples

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
	MAEEM Dept., UMR

Solution of Burger's equation

Use MacCormack's method to solve inviscid Burger's equation using a mesh with 51 points in the x-direction. Solve the equation for a right propagating discontinuity with $\mathrm{u}=1$ at the first 11 nodes and $u=0$ at the rest of the nodes.
Use Courant number $=1$.
Solution

MacCormack's method

$\bar{u}_{j}^{n+1}=u_{j}^{n}-\frac{\Delta t}{\Delta x}\left(F_{j+1}^{n}-F_{j}^{n}\right)$

$$
u_{j}^{n+1}=\frac{1}{2}\left[u_{j}^{n}+\bar{u}_{j}^{n+1}-\frac{\Delta t}{\Delta x}\left(\bar{F}_{j}^{n}-\bar{F}_{j-1}^{n}\right)\right]
$$

