


Computational Fluid Dynamics (AE/ME 339)K. M. Isaac
MAE Dept., UMRDefine
$$\frac{df}{d\eta} = \xi, \quad \frac{d\xi}{d\eta} = \zeta$$

The 3 first-order equations become $\frac{df}{d\eta} = \xi$
 $\frac{d\xi}{d\eta} = \zeta$
 $\frac{d\xi}{d\eta} = -f\zeta + \xi^2$

omputational Fluid Dynamics (AE/ME 339) DE	K. M. Isaac MAE Dept., UMR
Boundary Conditions:	
at $\eta=0$:	
$f = 0, \zeta = 0$	
at $\eta = \infty$:	
$\xi = 0$	
The above is a boundary-value problem. In of such as R-K, the problem must be recast as a instead of applying the third BC directly, sol- different values of ξ at $\eta = 0$. The correct solution is the one that satisfies	an I-V problem. lution is obtained for

Computational Fluid Dynamics (AE/ME 339)	K. M. Isaac
ODE	MAE Dept., UMR
Example	
Consider the RLC circuit which is governed by	the following equation
$LC\frac{d^2V}{dt^2} + RC\frac{dV}{dt} + V = 0$	
where	
L - inductance (Henry)	
C - capacitance (Farad)	
R - resistance (Ohm)	
V - voltage (volt)	
Initial conditions:	
$V(0) = V_0, \frac{dV}{dt}(0) = 0$	

omputational Fluid Dynamics (AE/ME 339)	K. M. Isaac
DE	MAE Dept., UMR
Rewrite the circuit equation as	
$LC \frac{d^2V}{dt^2} = -RC \frac{dV}{dt} - V$	
$LC \frac{dt^2}{dt^2} = -KC \frac{dt}{dt} - V$	
The above second-order equation can be	written as the two
following first-order equations:	
dV	
$Y_1 = V, Y_2 = \frac{dV}{dt}$	
$dY_1 dV dY_2 d^2V R dV$	1 R 1
$\frac{dY_1}{dt} = \frac{dV}{dt} = Y_2, \frac{dY_2}{dt} = \frac{d^2V}{dt^2} = -\frac{R}{L}\frac{dV}{dt} - \frac{R}{L}\frac{dV}{dt}$	$\overline{LC}V = -\overline{L}Y_2 - \overline{LC}Y_1$
with following initial conditions:	
$Y_{1,0} = V_0$, $Y_{2,0} = 0$	