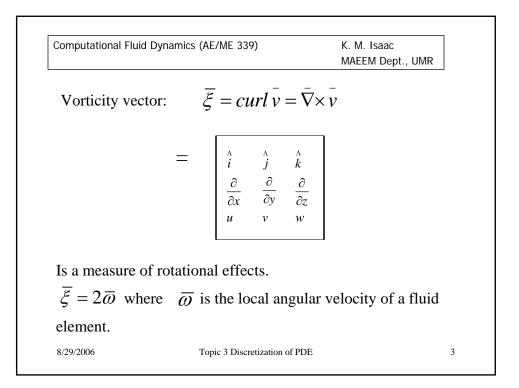
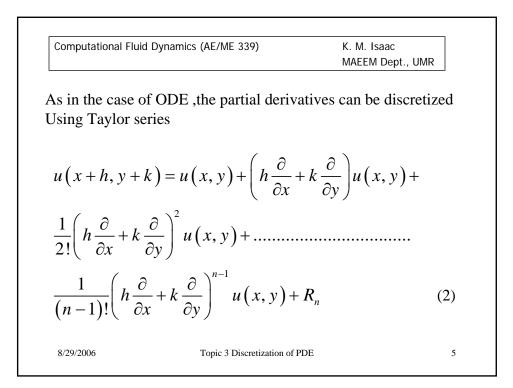
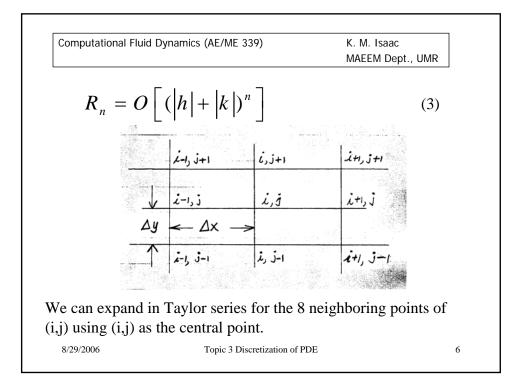
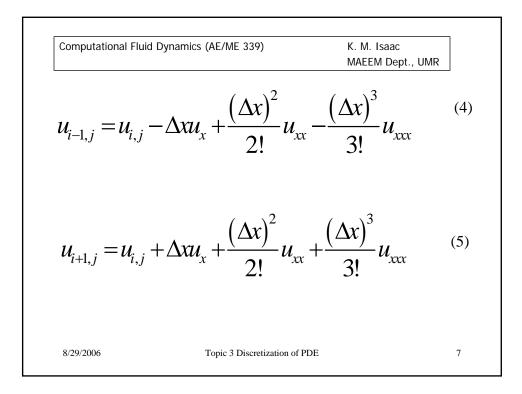


	mics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Dicretization of Pa	rtial Differential Eq	quations (CLW: 7.2, 7.3)
-	edure similar to the one	used in the previous
class	1	
	ady vorticity transport e	equation, noting that the
equation is non-linear.		

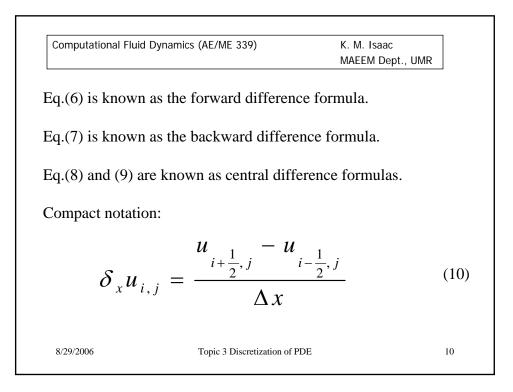


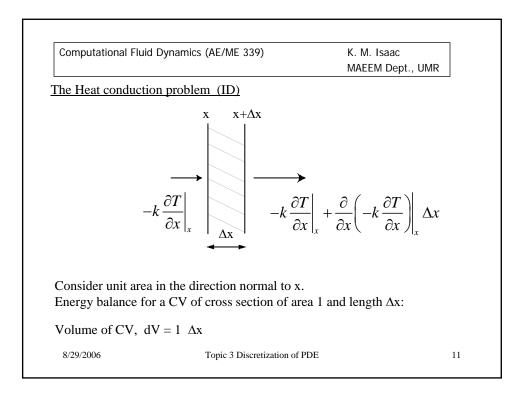


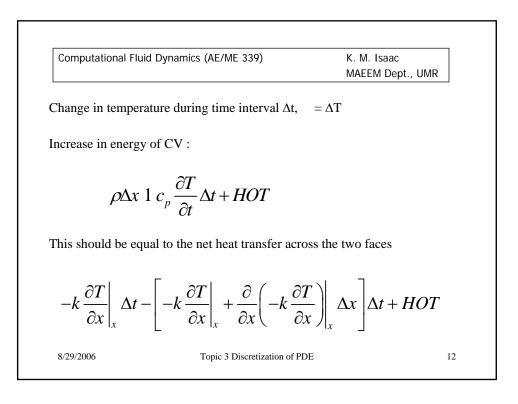


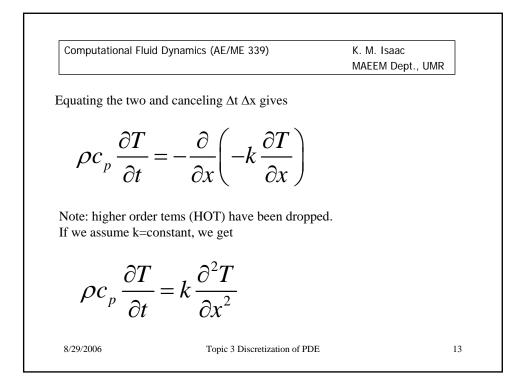


$$\begin{split} & \text{Computational Fluid Dynamics (AE/ME 339)} & \text{K. M. State MAE Dept., UMR} \\ & \text{Here} \quad u_x = \frac{\partial u}{\partial x}, u_{xx} = \frac{\partial^2 u}{\partial x^2} \quad \text{etc.} \\ & \text{Mote: all derivatives are evaluated at (i,j)} \\ & \text{Mote: all derivatives are evaluated at (i,j).} \\ & \frac{\partial u}{\partial x} = \frac{u_{i+1,j} - u_{i,j}}{\Delta x} + O\left(\Delta x\right) \qquad (6)$$

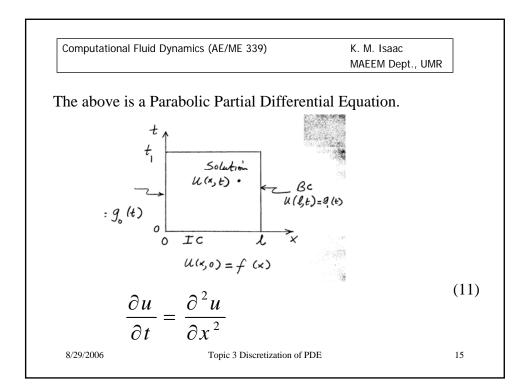




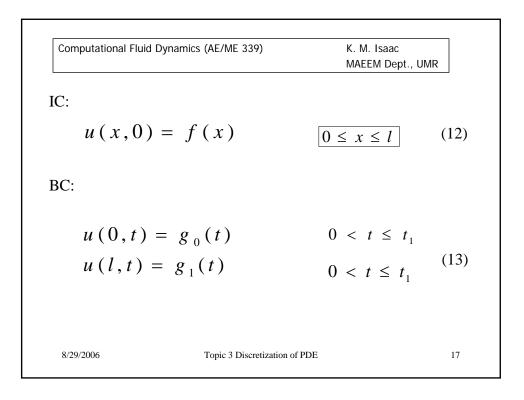




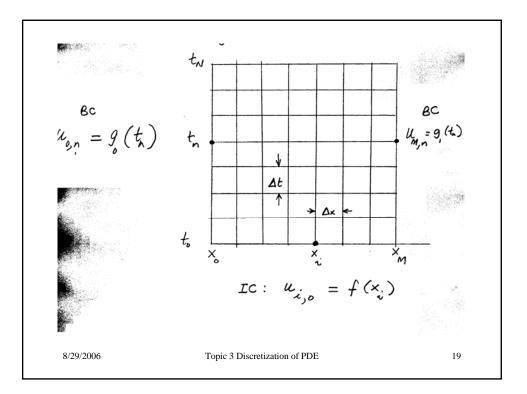
Computational Fluid Dynamics (AE/ME 339)
Nr
$$\frac{\partial T}{\partial t} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial x^2} = \alpha \frac{\partial^2 T}{\partial x^2}$$
Where
$$\alpha = \frac{k}{\rho c_p}$$
is the thermal diffusivity.
Letting $\xi = x/L$, and $\tau = \alpha t/L2$, the above equation becomes
$$\frac{\partial T}{\partial \tau} = \frac{\partial^2 T}{\partial \xi^2}$$
8/29/200

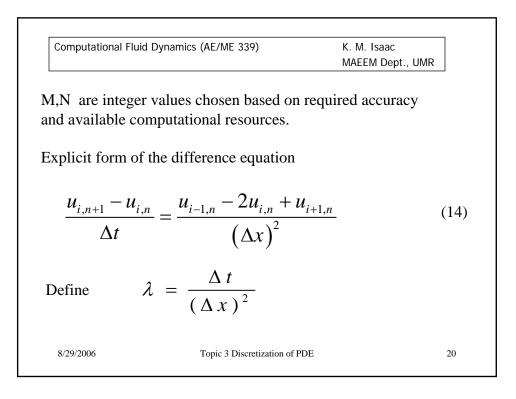


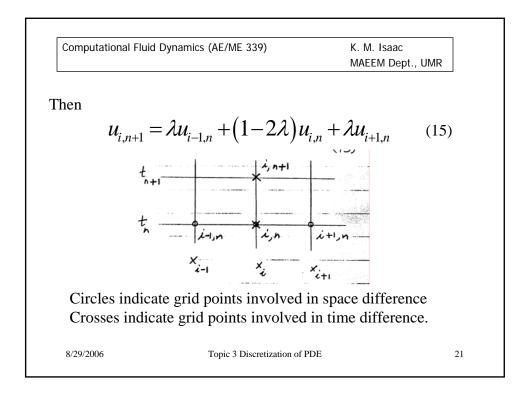
Computational Fluid D	ynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Physical problem		
at time t = 0 . Rod ends are mair	ntained at specified ter	n temperature distribution nperature at all time. distribution along the rod
$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$	- 0 < <i>x</i> <	$l, 0 < t < t_1$
	Topic 3 Discretization of P	DE 16



Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Difference Equa	tion	
	s establishing a networl igure in the next slide.	k of Grid points
Grid spacing:	$\Delta x = \frac{l}{M},$	$\Delta t = \frac{t_1}{N}$
8/29/2006	Topic 3 Discretization of F	PDE 18







Computational Fluid	Dynamics (AE/ME 339)	K. M. Isaac MAEEM Dept., UMR
Note:		
At time t=0 all va	llues $u_{i,0} = f(x_i)$	are known (IC).
In eq.(15) if all a can be calculated	$u_{i,n}$ are known at time explicitly.	e level <i>t</i> n, $u_{i,n+1}$
Thus all the value advancing to the	· · · · ·	must be calculated before
handled in the nu Select one or the	merical procedure. other for the numerical	(l,0) and $(l,0)$, it should be calculation.
	1	•

Computational Flu	uid Dynamics (AE/ME	E 339) K. M. Isaac MAEEM Dept., UMR	
Convergence of	of Explicit Forr	n.	
	at the finite difi lso will be an a	ference form is an approximation pproximation.	n.
		nly a finite number of terms in t neation error, ε.	he
The solution is	s said to conver	ge if	
<i>E</i> –	$\rightarrow 0$ when	$\Delta x, \Delta t \to 0$	
Error is also ir	ntroduced becau	$\Delta x, \Delta t \rightarrow 0$ use variables are represented by computer. This is known as rour	

 $\begin{array}{l} \hline \text{Computational Fluid Dynamics (AE/ME 339)} & \text{K. M. Isaac} \\ \text{MAEEM Dept., UMR} \end{array}$ For the explicit method, the truncation error, ε is $\varepsilon = O[\Delta t]$ The convergence criterion for the explicit method is as follows: $0 < \lambda \leq \frac{1}{2} \qquad \text{where} \quad \lambda = \frac{\Delta t}{(\Delta x)^2}$