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Dicretization of Partial Differential Equations (CLW: 7.2, 7.3)

We will follow a procedure similar to the one used in the previous 
class
We consider the unsteady vorticity transport equation, noting that the  
equation is non-linear. 
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Vorticity vector: 
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Is a measure of rotational effects.

2ξ ω= ωwhere is the local angular velocity of a fluid 

element.
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For 2-D incompressible flow, the vorticity transport equation 
is given by
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As in the case of ODE ,the partial derivatives can be discretized
Using Taylor series
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( ) n
nR O h k⎡ ⎤= +⎣ ⎦ (3)

We can expand in Taylor series for the 8 neighboring points of
(i,j) using (i,j) as the central point.
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Here etc.

Note: all derivatives are evaluated at (i,j)

Rearranging the equations yield the following finite difference
formulas for the derivatives at (i,j).
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Eq.(6) is known as the forward difference formula.

Eq.(7) is known as the backward difference formula.

Eq.(8) and (9) are known as central difference formulas.

Compact notation:
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The Heat conduction problem  (ID)

Consider unit area in the direction normal to x.
Energy balance for a CV of cross section of area 1 and length ∆x: 

Volume of CV,  dV = 1  ∆x
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Change in temperature during time interval ∆t,     = ∆T 

Increase in energy of CV : 

 1 p
Tx c t HOT
t

ρ ∂
∆ ∆ +

∂

This should be equal to the net heat transfer across the two faces 
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Equating the two and canceling ∆t ∆x gives 

p
T Tc k
t x x

ρ ∂ ∂ ∂⎛ ⎞= − −⎜ ⎟∂ ∂ ∂⎝ ⎠
Note: higher order tems (HOT) have been dropped.
If we assume k=constant, we get
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α
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≡ is the thermal diffusivity.

Or

Letting ξ = x/L, and τ = αt/L2, the above equation becomes
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The above is a Parabolic Partial Differential Equation.
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Physical problem 

A rod insulated on the sides with a given temperature distribution
at time t = 0 .
Rod ends are maintained at specified temperature at all time.
Solution u(x,t) will provide temperature distribution along the rod
At any time t > 0.
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IC:

( , 0 ) ( )u x f x= 0 x l≤ ≤ (12)

BC:
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Difference Equation

Solution involves establishing a network of  Grid points 
as shown in the figure in the next slide.

Grid spacing: ,lx
M

∆ = 1tt
N

∆ =
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M,N  are integer values chosen based on required accuracy
and available computational resources.

Explicit form of the difference equation
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Then 

( ), 1 1, , 1,1 2i n i n i n i nu u u uλ λ λ+ − += + − + (15)

Circles indicate grid points involved in space difference
Crosses indicate grid points involved in time difference.
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Note:
At time t=0 all values ( ),0i iu f x= are  known (IC).

In eq.(15) if all ,i nu are known at time level tn, , 1i nu +
can be calculated explicitly.

Thus all the values at a time level (n+1) must be calculated before
advancing to the next time level.

Note: If all IC and BC do not match at (0,0) and ( ,0)l , it should be
handled in the numerical procedure.
Select one or the other for the numerical calculation.
There will be a small error present because of this inconsistency.
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Convergence of Explicit Form.

Remember  that the finite difference form is an approximation.
The solution also will be an approximation.

The error introduced due to only a finite number of terms in the
Taylor series is known as truncation error, ε.

The solution is said to converge if 

0ε → when , 0x t∆ ∆ →
Error is also introduced because variables are represented by a 
finite number of digits in the computer.This is known as round-
off error.
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[ ]O tε = ∆

For the explicit method, the truncation error, ε is  

The convergence criterion for the explicit method is as follows:

0 <  1
2

λ ≤ 2( )
t
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λ ∆
=
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