The world inside atoms revealed by ultrafast light pulses: The 2023 Physics Nobel Prize

The world inside atoms revealed by ultrafast light pulses: The 2023 Physics Nobel Prize

Pierre Agostini The Ohio State University, USA

Ferenc Krausz Max Planck Institute for Quantum Optics, Germany

Anne L'Huillier Lund University, Sweden

"for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter"

Outline

1. Imaging fast motion

- Leland Stanford's horse bet
- Shutters and stroboscopes
- 2. Attosecond light pulses
 - How long is an attosecond?
 - Why attosecond pulses?
- 3. Creating attosecond pulses
 - Experiments by Agostini, Krausz, and L'Huillier
 - Attosecond physics

Stanford's horse bet

Mid 19th century:

Leland Stanford bet \$25,000 that all four of a horse's feet **come off the ground** at a fast trot

Eadweard Muybridge: The man who stopped time

Imaging a moving horse leg:

- required spatial resolution $\Delta x \approx 0.01\,\mathrm{m}$
- horse's speed $v \approx 10 \, {\rm m/s}$
- exposure time should not exceed $T = \Delta x / v \approx 1/1000 \, \text{s} = 1 \, \text{ms}$

First high-speed camera:

- 1873: Stanford approached English photographer **Eadweard Muybridge**
- Muybridge initially believed task impossible (exposures usually took seconds in 1870's)
- developed successful technique over 5+ years
- spring-loaded wooden shutters, triggered electrically, exposure time 1/1000 s

The horse in motion: book and early movie

Patent for apparatus applied for.

MUYBRIDGE.

AUTOMATIC ELECTRO-PHOTOGRAPH.

"SALLIE GARDNER," owned by LELAND STANFORD; ridden by G. DOMM, running at a 1.40 gait over the Palo Alto track, 19th June, 1878.

The negatives of these photographs were made at intervals of twenty-seven inches of distance, and about the twenty-fifth part of a second of time; they illustrate consecutive positions assumed during a single stride of the mare. The vertical lines were twenty-seven inches apart; the horizontal lines represent elevations of four inches each. The negatives were each exposed during the two-thousandth part of a second, and are absolutely "untouched."

The horse in motion: book and early movie

Speed of motion and shutter speed

- hummingbird wings beat up to 100 times per second
- $\bullet\,$ motion of wings "frozen" in picture when shutter speed faster than 1/100 s

Shutter speed 1/50s

1/2000s

To image dynamic process, exposure needs to be shorter than characteristic time scale

Stroboscope

- instead of opening and closing a shutter, illuminate object by light flash or sequence of flashes
- can be achieved mechanically, for example via rotating wheel
- shorter pulses produced by electronic flash tubes

25 flashes per second

Imaging bullet in flight

- \bullet speed about 1000 m/s,
- required spatial resolution about 1mm
- \Rightarrow exposures shorter than 1 microsecond

- MIT professor Harold Edgerton popularized using stroboscopes in science
- 1964: photograph *Bullet through Apple*, taken using a pulse of 1/3 microseconds

Bullet through Apple, Smithsonian American Art Museum

1. Imaging fast motion

- Leland Stanford's horse bet
- Shutters and stroboscopes
- 2. Attosecond light pulses
 - How long is an attosecond?
 - Why attosecond pulses?
- 3. Creating attosecond pulses
 - Experiments by Agostini, Krausz, and L'Huillier
 - Attosecond physics

Metric unit prefixes

Prefix	Exponent	Number	Scientific Notation	Name
Exa (E)	18	1,000,000,000,000,000,0	10 ¹⁸	quintillion
Peta (P)	15	1,000,000,000,000,000) 10 ¹⁵	quadrillion
Tera (T)	12	1,000,000,000,000	10 ¹²	trillion
Giga (G)	9	1,000,000,000	10 ⁹	billion
Mega (M)	6	1,000,000	10 ⁶	million
kilo (k)	3	1,000	10 ³	thousand
hecto (h)	2	100	10 ²	hundred
deca (da)	1	10	10 ¹	ten
	0	1	10 ⁰	one
deci (d)	-1	0.1	10 -1	one tenth
centi (c)	-2	0.01	10 ⁻²	one hundredth
milli (m)	-3	0.001	10 ⁻³ (one thousandth
micro (µ)	-6	0.000001	10 -6	one millionth
nano (n)	-9	0.00000001	10 -9	one billionth
pico (p)	-12	0.00000000001	10 ⁻¹²	one trillionth
femto (f)	-15	0.0000000000000000000000000000000000000	10 ⁻¹⁵ 0	ne quadrillionth
atto (a)	-18	0.0000000000000000000000000000000000000)1 10 ⁻¹⁸ c	one quintillionth

The attosecond

- attosecond is a **billionth of a billionth** of a second, $1 \text{ as} = 10^{-18} \text{ s}$
- number of of attoseconds in a second is about equal to the number of seconds in the age of the universe

Why attosecond pulses? Timescales of natural processes

Detour: Femtophysics and femtochemistry

Imaging the motion of atoms and molecules:

- spatial resolution 10^{-11} m (atom size 10^{-10} m)
- \bullet speed at room temperature: about 1000 m/s
- exposure time should not exceed $10^{-14} s = 10$ femtoseconds
- \Rightarrow use femtosecond laser pulses

Reaction splitting iodine molecule by electron exchange with benzene, Baskin and Zewail (2001)

1999 Nobel Prize in Chemistry:

Ahmed H. Zewail (California Institute of Technology)

"for his studies of the transition states of chemical reactions using femtosecond spectroscopy"

Electron dynamics in matter

- electrons are **much lighter** than atomic nuclei (proton mass is about 2000 times electron mass)
- \Rightarrow electrons move **much faster** than atoms

Classical (Bohr) model of hydrogen:

- electron orbits proton at radius of 53 picometers $(53 \times 10^{-12} \text{ m})$
- orbital period: 150 attoseconds

Quantum mechanics of hydrogen:

- real-time dynamics created by superposition of different eigenstates
- example: superposition of 1s and 2s states oscillates with period

$$T = h/|E_1 - E_2| \approx 400$$
 attoseconds

Imaging electron dynamics requires attosecond light pulses

1. Imaging fast motion

- Leland Stanford's horse bet
- Shutters and stroboscopes
- 2. Attosecond light pulses
 - How long is an attosecond?
 - Why attosecond pulses?
- 3. Creating attosecond pulses
 - Experiments by Agostini, Krausz, and L'Huillier
 - Attosecond physics

Are sub-femtosecond pulses possible?

- light is (electromagnetic) wave
- short pulse is wave packet
- pulse cannot be shorter than one oscillation period $T=\lambda/c$
- typical laser systems have periods of a few femtoseconds
- at first glance, sub-femtosecond pulses seem **impossible**

Are sub-femtosecond light pulses possible?

- light is (electromagnetic) wave
- short pulse is wave packet
- pulse cannot be shorter than one oscillation period $T = \lambda/c$
- typical laser system have periods of a few femtoseconds
- at first glance, sub-femtosecond pulses seem **impossible**

Need coherent XUV radiation, light with much shorter period/wavelength!

Anne L'Huillier: High-harmonic generation

- in 1987, L'Huillier sent light of powerful laser through nobel gases (Ar, Kr, Xe)
- interaction between laser and gas atoms generates light at much higher frequencies
- specifically, it generates **high harmonics**, waves at **integer multiples** of original frequency

Detour 1: 2018 Physics Nobel Prize

Arthur Ashkin Bell Laboratories

"for the optical tweezers and their application to biological systems"

Gérard Mourou École Polytechnique Palaiseau

Donna Strickland University of Waterloo

"for their method of generating high-intensity ultra-short optical pulses"

Chirped pulse amplification

Detour 2: Overtones - harmonics of sound waves

How does high-harmonic generation work?

- An electron that is bound to an atom's nucleus cannot normally leave its atom; it does not have enough energy to lift itself out of the well created by the atom's electrical field.
- 2 The atom's field is distorted when it is affected by the laser pulse. When the electron is only held by a narrow barrier, quantum mechanics allow it to tunnel out and escape.
- 3 The free electron is still affected by the laser field and gains some extra energy. When the field turns and changes direction, the electron is pulled back in the direction it came from.
- 4 To reattach to the atom's nucleus, the electron must rid itself of the extra energy it gained during its journey. This is emitted as an ultraviolet flash, the wavelength of which is linked to that of the laser field, and differs depending on how far the electron moved.

Pierre Agostini: Attosecond pulse trains

- in 1990's Pierre Agostini and coworkers developed techniques to analyze and measure attosecond pulses
- in 2001, Agostini's group produced train of pulses with duration of 250 attoseconds

Paul et al., Science 292, 1689 (2001)

Ferenc Krausz: Isolated attosecond pulses

- start with short, few-cycle laser pulse
- highest harmonics only generated in central laser cycle
- selecting these harmonics via spectral filter leads to single XUV pulse

• in 2001, Krausz' group managed to create **isolated pulse of 650 as duration** (530 as in simulation)

Attosecond spectroscopy of liquid water

Jordan et al., Science 369, 974 (2020)

Dynamics of the photoelectric effect

Cavalieri et al., Nature 449, 1029 (2007)

Charge migration in bio-relevant molecules

Electron dynamics in phenylalanine initiated by attosecond pulses

Calegari et al., Science 346, 336 (2014)

Light science

Magnetics/ARPES

Metrology

Imaging

2023 Physics Nobel Prize

Pierre Agostini The Ohio State University, USA

Ferenc Krausz Max Planck Institute for Quantum Optics, Germany

Anne L'Huillier Lund University, Sweden

"for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter"