Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments

Thomas Vojta and Hatem Barghathi

Department of Physics, Missouri University of Science and Technology

José A. Hoyos Instituto de Física de São Carlos, Universidade de São Paulo

Paris, July 25, 2016

How does temporal disorder (environmental noise) affect phase transitions in spreading and growth processes ?

- Stability criterion
- Logistic evolution equation
- Strong-noise renormalization group
- Contact process
- Monte-Carlo simulations

EPL **112**, 30002 (2015), arXiv:1507.05677 arXiv:1603.08075

spatial quenched disorder:

- system parameters vary randomly in space but are constant in time
- clean critical point is stable if $d\nu_{\perp} > 2$ (Harris criterion)

temporal disorder:

- system parameters **fluctuate randomly in time** but are uniform in space
- to derive stability criterion, divide time into intervals of length ξ_t
- fluctuations of distance from criticality between intervals: $\Delta r(\xi_t) \sim \xi_t^{-1/2}$
- global distance from criticality: $r_{av} \sim \xi_t^{-1/\nu_{||}}$

Kinzel's stability criterion:

clean critical point stable if correlation time exponent fulfills $\nu_{\parallel} = \nu_{\perp} z > 2$

Generalization to arbitrary spatio-temporal disorder: T.V. + R. Dickman, PRE 93, 032143 (2016)

- Stability criterion
- Logistic evolution equation
- Strong-noise renormalization group
 - Contact process
 - Monte-Carlo simulations

Single-variable (mean-field) model of epidemic spreading:

$$\frac{d}{dt}\rho(t) = (\lambda - \mu)\,\rho(t) - \lambda\rho^2(t)$$

- ρ : density of infected organisms
- large populations: intrinsic (demographic) noise neglected

Exact solution:

$$\rho^{-1}(t) = a(t)\rho^{-1}(t_0) + c(t)$$

with

$$a(t) = e^{(\mu - \lambda)(t - t_0)}$$
$$c(t) = [a(t) - 1]\lambda/(\mu - \lambda)$$

Healing rate μ

Infection rate λ

Absorbing state transition

- infection dies out, $\rho(t) \rightarrow 0$ for $\mu > \lambda$
- infection survives, $\rho(t) \rightarrow \rho_{\rm st} > 0$ for $\mu < \lambda$
- \Rightarrow absorbing state transition at $\lambda = \mu$
 - critical behavior in mean-field directed percolation universality class

• stationary density
$$\rho_{\rm st} = (\lambda - \mu)/\lambda \qquad \Rightarrow \beta = 1$$

- correlation time $\xi_t = |\lambda \mu| \implies |\nu_{\parallel} = z\nu_{\perp} = 1$
- critical density decay $ho(t) \sim t^{-1} \qquad \Rightarrow \quad \delta = 1$

Criterion $\nu_{\parallel} > 2$ violated \Rightarrow clean critical point unstable against temporal disorder

Temporal disorder (external environmental noise):

- modeled by time-dependent healing and infection rates
- temporal disorder is relevant perturbation at clean critical point because $\nu_{\parallel} < 2$

Piecewise constant rates:

- $\mu(t) = \mu_n$, $\lambda(t) = \lambda_n$ in time intervals Δt_n
- closed-form solution in each interval
- $\Rightarrow \quad \text{linear recurrence for inverse density} \\ \rho_{n+1}^{-1} = a_n \rho_n^{-1} + c_n$
 - multipliers $a_n = \exp[(\mu_n \lambda_n)\Delta t_n]$
 - constants $c_n = (a_n 1)\lambda_n(\mu_n \lambda_n)$

Reflected random walk

- recurrence $\rho_{n+1}^{-1} = a_n \rho_n^{-1} + c_n$ maps onto random walk for $x_n = -\ln \rho_n$
- effect of constants c_n approximated by reflecting boundary condition at x = 0
- approximation good if typical $x \gg 1$ (typical $\rho \ll 1$).

Probability distribution $P_n(x)$:

• *n* time intervals after starting from $\rho_0 = 1$ (i.e., $x_0 = 0$)

$$P_n(x) = \frac{2}{\sqrt{2\pi\sigma^2 n}} e^{-\frac{(x-rn)^2}{2\sigma^2 n}} - \frac{2r}{\sigma^2} e^{\frac{2rx}{\sigma^2}} \Phi\left(\frac{-x-rn}{\sigma^{n+1/2}}\right)$$

•
$$r = \langle \ln a \rangle = \langle (\mu_n - \lambda_n) \Delta t_n \rangle$$
: distance from criticality

• $\sigma^2 = \langle \ln^2 a \rangle - \langle \ln a \rangle^2$

Bulk phases

$$P_n(x) = \frac{2}{\sqrt{2\pi\sigma^2 n}} e^{-\frac{(x-rn)^2}{2\sigma^2 n}} - \frac{2r}{\sigma^2} e^{\frac{2rx}{\sigma^2}} \Phi\left(\frac{-x-rn}{\sigma^{n/2}}\right)$$

Inactive phase, r > 0

- entire distribution $P_n(x)$ shifts to larger x with $n \to \infty$
- almost all disorder realizations have very small density at long times
 ⇒ conventional behavior

Active phase, r < 0

- $P_n(x)$ becomes stationary for long times, $P_n(x) \to P_{st}(x) = (2|r|/\sigma^2)e^{-2|r|x/\sigma^2}$ \Rightarrow highly singular density distribution $\bar{P}_{st}(\rho) = (1/\kappa)\rho^{-1+1/\kappa}$
- exponent $\kappa = \sigma^2/(2|r|)$ nonuniversal, diverges at criticality
- average density: $\langle
 ho_{
 m st}
 angle \sim |r|$
- typical density: $\rho_{\rm st}^{
 m typ} \sim \exp(-{
 m const}/|r|).$

Infinite-noise critical point

Infinite-noise critical point is analog of infinite-randomness critical points in spatially disordered systems but with roles of space and time exchanged

At criticality:

$$P_n(x) = 2(2\pi\sigma^2 n)^{-1/2} e^{-x^2/(2\sigma^2 n)}$$

- **broadens without limit** with increasing time
- average density $\langle \rho_n \rangle = 2(2\pi\sigma^2 n)^{-1/2} \sim t^{-1/2}$
- typical density decays much faster $\rho_n^{\rm typ} = e^{-(2\sigma^2 n/\pi)^{1/2}}$

Critical exponents:

$$\delta = 1/2 \;, \qquad eta = 1 \;, \quad
u_{\parallel} = 2$$

- novel universality class
- ν_{\parallel} saturates bound $\nu_{\parallel} \geq 2$

Temporal Griffiths phase

Life time of finite-size sample:

- clean system of size N in active phase: exponential dependence $\tau_N \sim \exp(cN)$
- in presence of temporal disorder: power-law dependence $\tau_N \sim N^{1/\kappa}$
- Griffiths exponent $\kappa = \sigma^2/(2|r|)$ diverges at criticality, same exponent as in density distribution

10^{6} p 0.18 0.23 0.28 0

Temporal Griffiths phase:

 region of the active phase that features anomalous power-law dependence of the life time on the system size (F. Vazquez et al., PRL, 106, 235702 (2011))

- Stability criterion
- Logistic evolution equation
- Strong-noise renormalization group
 - Contact process
 - Monte-Carlo simulations

Basic idea:

iteratively eliminate smallest up or down segment by combining it with its neighbors, $\Omega = \min(a_i^{\mathrm{up}}, 1/a_i^{\mathrm{dn}})$

RG recursions:

$$\tilde{a}^{up} = a_{i+1}^{up} a_i^{up} / \Omega$$

$$1/\tilde{a}^{dn} = (1/a_i^{dn}) (1/a_{i-1}^{dn}) / \Omega$$

$$\Delta \tilde{t}^{up} = \Delta t_i^{up} + \Delta t_i^{dn} + \Delta t_{i+1}^{up}$$

$$\Delta \tilde{t}^{dn} = \Delta t_{i-1}^{dn} + \Delta t_i^{up} + \Delta t_i^{dn}$$

$$\begin{split} \tilde{c}^{\mathrm{up}} &= a^{\mathrm{up}}_{i+1} a^{\mathrm{dn}}_i c^{\mathrm{up}}_i + a^{\mathrm{up}}_{i+1} c^{\mathrm{dn}}_i + c^{\mathrm{up}}_{i+1} \\ \tilde{c}^{\mathrm{dn}} &= a^{\mathrm{dn}}_i a^{\mathrm{up}}_i c^{\mathrm{dn}}_{i-1} + a^{\mathrm{dn}}_i c^{\mathrm{up}}_i + c^{\mathrm{dn}}_i \end{split}$$

Solving the strong-noise RG

- recursions for multipliers and time intervals equivalent to Fishers's RG for RTIM
- iterate RG step: flow equations for distributions *R* and *P* of a_i^{up} and a_i^{dn} (using logarithmic variables Γ = ln Ω, β = ln a^{up} − Γ, and ζ = −ln a^{dn} − Γ)

$$\frac{\partial \mathcal{R}}{\partial \Gamma} = \frac{\partial \mathcal{R}}{\partial \beta} + (\mathcal{R}_0 - \mathcal{P}_0)\mathcal{R} + \mathcal{P}_0\left(\mathcal{R} \overset{\beta}{\otimes} \mathcal{R}\right)$$
$$\frac{\partial \mathcal{P}}{\partial \Gamma} = \frac{\partial \mathcal{P}}{\partial \zeta} + (\mathcal{P}_0 - \mathcal{R}_0)\mathcal{P} + \mathcal{R}_0\left(\mathcal{P} \overset{\zeta}{\otimes} \mathcal{P}\right)$$

- can be solved via ansatz $\mathcal{R}(\beta;\Gamma) = \mathcal{R}_0 e^{-\mathcal{R}_0\beta}$, $\mathcal{P}(\zeta;\Gamma) = \mathcal{P}_0 e^{-\mathcal{P}_0\zeta}$
- flow equations reduce to ordinary differential equations

$$d\mathcal{R}_0/d\Gamma = -\mathcal{R}_0\mathcal{P}_0 , \quad d\mathcal{P}_0/d\Gamma = -\mathcal{R}_0\mathcal{P}_0$$

- fixed points can be found analytically
- ⇒ critical point is analogous to random transverse-field Ising chain, but with time playing role of length

Renormalization group results

Fixed points:

- critical point: ${\cal R}_0={\cal P}_0=1/\Gamma$, time scale $\Delta { ilde t}\sim \Gamma^2$,
- inactive phase: $\mathcal{R}_0 = \exp(-\Gamma/\kappa)/\kappa$, $\mathcal{P}_0 = 1/\kappa$ with constant κ , time scale $\Delta \tilde{t} \sim \exp(\Gamma/\kappa)$
- active phase: $\mathcal{R}_0 = 1/\kappa$, $\mathcal{P}_0 = \exp(-\Gamma/\kappa)/\kappa$, $\Delta \tilde{t} \sim \exp(\Gamma/\kappa)$

Observables:

• lifetime τ_N : run RG until the typical upward multiplier a^{up} reaches N τ_N is typical time interval at this RG scale

$$\tau_N \sim \begin{cases} N^{1/\kappa} & \text{active phase} \\ (\ln N)^2 & \text{criticality} \\ \ln N & \text{inactive phase} \end{cases}$$

• width of P(x) at criticality: proportional to $\ln a^{\mathrm{up}} \sim \Gamma \sim t^{1/2}$

Strong-noise RG reproduces results of the reflected-random-walk approach

- Stability criterion
- Logistic evolution equation
- Strong-noise renormalization group
- Contact process (in finite dimensions)
 - Monte-Carlo simulations

Contact process

- each site can be either healthy (inactive) or sick (active)
- sick sites heal with rate μ
- healthy sites get infected by neighbors with rate λ

- absorbing state transition in directed percolation universality class
- correlation time exponent violates Kinzel's criterion $\nu_{||}>2$ in all d
- \Rightarrow temporal disorder is **relevant** perturbation

Strong-noise RG in finite dimensions

Strong disorder:

- individual spreading and decay segments are deep in bulk phases
- \Rightarrow neglect spatial fluctuations
- \Rightarrow develop theory in terms of $\rho(t)$ only

Renormalization group recursions:

- density decay is exponential in time (as in mean-field case) recursion for decay segments multiplicative
- spreading is **ballistic**, $\rho(t) \approx \rho_0 (1 + bt)^d$, rather than exponential additive rather than multiplicative RG recursion

$$\tilde{a}^{\text{up}} = a_{i+1}^{\text{up}} a_i^{\text{up}} / \Omega$$

$$(1/\tilde{a}^{\text{dn}})^{1/d} = (1/a_i^{\text{dn}})^{1/d} + (1/a_{i-1}^{\text{dn}})^{1/d} - \Omega^{1/d}$$

Flow equations

- reduced variables $\beta = \ln a^{\mathrm{up}} \Gamma$ and $\zeta = d[(\Omega a^{\mathrm{dn}})^{-1/d} 1]$
- flow equations for distributions ${\cal R}$ and ${\cal P}$ of $a_i^{\rm up}$ and $a_i^{\rm dn}$

$$\begin{aligned} \frac{\partial \mathcal{R}}{\partial \Gamma} &= \frac{\partial \mathcal{R}}{\partial \beta} + (\mathcal{R}_0 - \mathcal{P}_0)\mathcal{R} + \mathcal{P}_0\left(\mathcal{R} \overset{\beta}{\otimes} \mathcal{R}\right) \\ \frac{\partial \mathcal{P}}{\partial \Gamma} &= \left(1 + \frac{\zeta}{d}\right) \frac{\partial \mathcal{P}}{\partial \zeta} + \left(\mathcal{P}_0 - \mathcal{R}_0 + \frac{1}{d}\right)\mathcal{P} + \mathcal{R}_0\left(\mathcal{P} \overset{\zeta}{\otimes} \mathcal{P}\right) \end{aligned}$$

• solved by exponential ansatz $\mathcal{R}(\beta;\Gamma) = \mathcal{R}_0 e^{-\mathcal{R}_0\beta}$, $\mathcal{P}(\zeta;\Gamma) = \mathcal{P}_0 e^{-\mathcal{P}_0\zeta}$

$$d\mathcal{R}_0/d\Gamma = -\mathcal{R}_0\mathcal{P}_0$$
, $d\mathcal{P}_0/d\Gamma = (1/d - \mathcal{R}_0)\mathcal{P}_0$

 \Rightarrow Kosterlitz-Thouless type flow equations (mean-field case recovered for $d \rightarrow \infty$)

Fixed points:

- line of fixed points at $\mathcal{P}_0^* = 0, \mathcal{R}_0^*$ arbitrary
- FPs stable for $\mathcal{R}_0 > 1/d$ (active phase)
- FPs unstable for $\mathcal{R}_0 < 1/d$, flow towards $\mathcal{R}_0 = 0$, $\mathcal{P}_0 = \infty$ (inactive phase)

Critical fixed point:

- endpoint $\mathcal{P}_0 = 0$, $\mathcal{R}_0 = 1/d$ of active FP line
- distribution P(x) of $x = -\ln \rho$ broadens with time but only logarithmically
- ⇒ infinite-noise critical point, but in different universality class than mean-field case
 - Griffiths singularities in the life time of finite-size systems, $\tau_N \sim N^{1/\kappa}$

• Griffiths exponent κ saturates at $\kappa_c=d$

Critical behavior:

$$\begin{split} \langle \rho \rangle \sim (\ln t)^{-\bar{\delta}} & \text{with } \bar{\delta} = 1 \\ \rho_{\text{st}} \sim |r|^{\beta} & \text{with } \beta = 1/2 \\ \xi_t \sim \xi^z & \text{with } z = 1 \\ \ln \xi_t \sim |r|^{-\bar{\nu}_{\parallel}} & \text{with } \bar{\nu}_{\parallel} = 1/2 \end{split}$$
the usual correlation time exponent ν_{\parallel} is formally infinite

Scaling theory

• density of active sites:

$$\rho_{\rm av}(r, t, L) = (\ln b)^{-\beta/\bar{\nu}_{\perp}} \rho_{\rm av}(r(\ln b)^{1/\bar{\nu}_{\perp}}, tb^{-z}, Lb^{-1})$$

- survival probability (starting from single seed site) $P_s(r, t, L) = (\ln b)^{-\beta/\bar{\nu}_{\perp}} P_s(r(\ln b)^{1/\bar{\nu}_{\perp}}, tb^{-z}, Lb^{-1})$
- radius of spreading cluster and its number of sites

$$R(r,t,L) = b(\ln b)^{-y_R} R(r(\ln b)^{1/\bar{\nu}_{\perp}}, tb^{-z}, Lb^{-1})$$

$$N_s(r,t,L) = b^d (\ln b)^{-y_N} N_s(r(\ln b)^{1/\bar{\nu}_{\perp}}, tb^{-z}, Lb^{-1})$$

Exponents:

 $\beta=1,~\bar{\nu}_{\perp}=1/2,~z=1$

Time dependencies at criticality:

$$\rho_{av}(t) \sim (\ln t)^{-1}$$

$$P_s(t) \sim (\ln t)^{-1}$$

$$R(t) \sim t(\ln t)^{-y_R}$$

$$N_s(t) \sim t^d (\ln t)^{-y_N}$$

- Stability criterion
- Logistic evolution equation
- Strong-noise renormalization group
 - Contact process
 - Monte-Carlo simulations

Spreading simulations in 1d

Strong disorder:

 $W_{\lambda}(\lambda) = p \,\delta(\lambda - \lambda_h) + (1 - p) \,\delta(\lambda - \lambda_h/20)$ with p = 0.8 and time interval $\Delta t = 6$.

Spreading simulations in 1d

Density decay simulations in 2D

Main: P(x) at criticality for different times t, scaled such that the curves coincide. Inset (a): Scale factor f_t vs. $\ln t$, confirming the logarithmic broadening of P(x)Inset (b): average density $\langle \rho(t) \rangle$ for varying infection rate λ

at criticality: $\kappa_c \approx 0.85$ (in 1d) and 1.9 (in 2d)

Conclusions

- random environmental noise (temporal disorder) destabilizes clean absorbing state transitions
- problem can be studied using real-time "strong noise" renormalization group
- leads to novel, exotic **"infinite-noise" critical points** at which the effective noise amplitude diverges on long time scales
- implies enormous density fluctuations, density distribution at criticality becomes infinitely broad (even on a logarithmic scale)
- renormalization group theory confirmed by numerical simulation for both the mean-field case and finite dimensions

Infinite-noise critical points in temporally disordered systems are the analogs of infinite-randomness critical points in spatially disordered systems, but with the roles of space and time exchanged.

For more details see: Europhys. Lett. 112, 30002 (2015), arXiv:1507.05677 and arXiv:1603.08075