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How does temporal disorder (environmental noise) affect
phase transitions in spreading and growth processes ?

• Stability criterion

• Logistic evolution equation

• Strong-noise renormalization group

• Contact process

• Monte-Carlo simulations
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Stability of a critical point

spatial quenched disorder:

• system parameters vary randomly in space but are constant in time

• clean critical point is stable if dν⊥ > 2 (Harris criterion)

temporal disorder:

• system parameters fluctuate randomly
in time but are uniform in space

• to derive stability criterion, divide time
into intervals of length ξt

• fluctuations of distance from criticality
between intervals:

∆r(ξt) ∼ ξ
−1/2
t

• global distance from criticality:

rav ∼ ξ
−1/ν∥
t

t

x
t

Kinzel’s stability criterion:

clean critical point stable if
correlation time exponent fulfills
ν∥ = ν⊥z > 2

Generalization to arbitrary spatio-temporal disorder: T.V. + R. Dickman, PRE 93, 032143 (2016)



• Stability criterion

• Logistic evolution equation

• Strong-noise renormalization group

• Contact process

• Monte-Carlo simulations



Logistic evolution equation

Single-variable (mean-field) model of
epidemic spreading:

d

dt
ρ(t) = (λ− µ) ρ(t)− λρ2(t)

• ρ: density of infected organisms

• large populations: intrinsic
(demographic) noise neglected

Exact solution:

ρ−1(t) = a(t)ρ−1(t0) + c(t)

with

a(t) = e(µ−λ)(t−t0)

c(t) = [a(t)− 1]λ/(µ− λ)
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Absorbing state transition

• infection dies out, ρ(t) → 0 for µ > λ

• infection survives, ρ(t) → ρst > 0 for
µ < λ

⇒ absorbing state transition at λ = µ

• critical behavior in mean-field directed
percolation universality class

• stationary density ρst = (λ− µ)/λ ⇒ β = 1

• correlation time ξt = |λ− µ| ⇒ ν∥ = zν⊥ = 1

• critical density decay ρ(t) ∼ t−1 ⇒ δ = 1

Criterion ν∥ > 2 violated ⇒ clean critical point unstable against temporal disorder



Logistic equation with temporal disorder

Temporal disorder (external environmental noise):

• modeled by time-dependent healing and infection rates

• temporal disorder is relevant perturbation at clean critical point because ν∥ < 2

Piecewise constant rates:

• µ(t) = µn, λ(t) = λn in time
intervals ∆tn

• closed-form solution in each interval

⇒ linear recurrence for inverse density

ρ−1
n+1 = anρ

−1
n + cn

• multipliers an = exp[(µn − λn)∆tn]

• constants cn = (an − 1)λn(µn − λn)
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Reflected random walk

• recurrence ρ−1
n+1 = anρ

−1
n + cn maps

onto random walk for xn = − ln ρn

• effect of constants cn approximated by
reflecting boundary condition at x = 0

• approximation good if typical x ≫ 1
(typical ρ ≪ 1).
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Probability distribution Pn(x):

• n time intervals after starting from ρ0 = 1 (i.e., x0 = 0)

Pn(x) =
2√

2πσ2n
e
−(x−rn)2

2σ2n − 2r

σ2
e
2rx
σ2 Φ

(
−x− rn

σn1/2

)

• r = ⟨ln a⟩ = ⟨(µn − λn)∆tn⟩: distance from criticality

• σ2 = ⟨ln2 a⟩ − ⟨ln a⟩2



Bulk phases

Pn(x) =
2√

2πσ2n
e
−(x−rn)2

2σ2n − 2r

σ2
e
2rx
σ2 Φ

(
−x− rn

σn1/2

)
Inactive phase, r > 0

• entire distribution Pn(x) shifts to larger x with n → ∞

• almost all disorder realizations have very small density at long times

⇒ conventional behavior

Active phase, r < 0

• Pn(x) becomes stationary for long times, Pn(x) → Pst(x) = (2|r|/σ2)e−2|r|x/σ2

⇒ highly singular density distribution P̄st(ρ) = (1/κ)ρ−1+1/κ

• exponent κ = σ2/(2|r|) nonuniversal, diverges at criticality

• average density: ⟨ρst⟩ ∼ |r|

• typical density: ρtypst ∼ exp(−const/|r|).



Infinite-noise critical point
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Infinite-noise critical point is analog of
infinite-randomness critical points in
spatially disordered systems but with
roles of space and time exchanged

At criticality:

Pn(x) = 2(2πσ2n)−1/2e−x2/(2σ2n)

• broadens without limit with
increasing time

• average density
⟨ρn⟩ = 2(2πσ2n)−1/2 ∼ t−1/2

• typical density decays much faster

ρtypn = e−(2σ2n/π)1/2

Critical exponents:

δ = 1/2 , β = 1 , ν∥ = 2

• novel universality class

• ν∥ saturates bound ν∥ ≥ 2



Temporal Griffiths phase

Life time of finite-size sample:

• clean system of size N in active phase:
exponential dependence τN ∼ exp(cN)

• in presence of temporal disorder:
power-law dependence τN ∼ N1/κ

• Griffiths exponent κ = σ2/(2|r|)
diverges at criticality, same exponent
as in density distribution 102 104 106 108
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Temporal Griffiths phase:

• region of the active phase that features anomalous power-law dependence of the
life time on the system size (F. Vazquez et al., PRL, 106, 235702 (2011))
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Real-time (strong-noise) renormalization group

Basic idea:

iteratively eliminate smallest up or
down segment by combining it with
its neighbors, Ω = min(aupi , 1/adni )

RG recursions:

ãup = aupi+1a
up
i /Ω

1/ãdn = (1/adni ) (1/adni−1)/Ω

∆t̃up = ∆tupi +∆tdni +∆tupi+1

∆t̃dn = ∆tdni−1 +∆tupi +∆tdni

c̃up = aup
i+1a

dn
i cupi + aup

i+1c
dn
i + cupi+1

c̃dn = adn
i aup

i cdni−1 + adn
i cupi + cdni
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Solving the strong-noise RG

• recursions for multipliers and time intervals equivalent to Fishers’s RG for RTIM

• iterate RG step: flow equations for distributions R and P of aupi and adni
(using logarithmic variables Γ = lnΩ, β = ln aup − Γ, and ζ = − ln adn − Γ)

∂R
∂Γ

=
∂R
∂β

+ (R0 − P0)R + P0

(
R

β
⊗ R

)
∂P
∂Γ

=
∂P
∂ζ

+ (P0 − R0)P + R0

(
P

ζ
⊗ P

)

• can be solved via ansatz R(β; Γ) = R0e
−R0β, P(ζ; Γ) = P0e

−P0ζ

• flow equations reduce to ordinary differential equations

dR0/dΓ = −R0P0 , dP0/dΓ = −R0P0

• fixed points can be found analytically

⇒ critical point is analogous to random transverse-field Ising chain,
but with time playing role of length



Renormalization group results

Fixed points:

• critical point: R0 = P0 = 1/Γ, time scale ∆t̃ ∼ Γ2 ,

• inactive phase: R0 = exp(−Γ/κ)/κ, P0 = 1/κ with constant κ,
time scale ∆t̃ ∼ exp(Γ/κ)

• active phase: R0 = 1/κ, P0 = exp(−Γ/κ)/κ, ∆t̃ ∼ exp(Γ/κ)

Observables:

• lifetime τN : run RG until the typical upward multiplier aup reaches N
τN is typical time interval at this RG scale

τN ∼

 N1/κ active phase
(lnN)2 criticality
lnN inactive phase

• width of P (x) at criticality: proportional to ln aup ∼ Γ ∼ t1/2

Strong-noise RG reproduces results of the reflected-random-walk approach



• Stability criterion

• Logistic evolution equation

• Strong-noise renormalization group

• Contact process (in finite dimensions)

• Monte-Carlo simulations



Contact process

• d-dimensional hypercubic lattice

• each site can be either healthy
(inactive) or sick (active)

• sick sites heal with rate µ

• healthy sites get infected by neighbors
with rate λ
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• absorbing state transition in directed
percolation universality class

• correlation time exponent violates Kinzel’s
criterion ν∥ > 2 in all d

⇒ temporal disorder is relevant perturbation



Strong-noise RG in finite dimensions

Strong disorder:

• individual spreading and decay segments
are deep in bulk phases

⇒ neglect spatial fluctuations

⇒ develop theory in terms of ρ(t) only

Renormalization group recursions:
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• density decay is exponential in time (as in mean-field case)

recursion for decay segments multiplicative

• spreading is ballistic, ρ(t) ≈ ρ0(1 + bt)d, rather than exponential

additive rather than multiplicative RG recursion

ãup = aupi+1a
up
i /Ω

(1/ãdn)1/d = (1/adni )1/d + (1/adni−1)
1/d − Ω1/d



Flow equations

• reduced variables β = ln aup − Γ and ζ = d[(Ωadn)−1/d − 1]

• flow equations for distributions R and P of aupi and adni

∂R
∂Γ

=
∂R
∂β

+ (R0 − P0)R + P0

(
R

β
⊗ R

)
∂P
∂Γ

=

(
1 +

ζ

d

)
∂P
∂ζ

+

(
P0 − R0 +

1

d

)
P + R0

(
P

ζ
⊗ P

)
.

• solved by exponential ansatz R(β; Γ) = R0e
−R0β, P(ζ; Γ) = P0e

−P0ζ

dR0/dΓ = −R0P0 , dP0/dΓ = (1/d−R0)P0

⇒ Kosterlitz-Thouless type flow equations (mean-field case recovered for d → ∞)



Infinite-noise critical point

Fixed points:

• line of fixed points at P∗
0 = 0,R∗

0 arbitrary

• FPs stable for R0 > 1/d (active phase)

• FPs unstable for R0 < 1/d, flow towards
R0 = 0, P0 = ∞ (inactive phase)

Critical fixed point:

• endpoint P0 = 0, R0 = 1/d of active FP line

• distribution P (x) of x = − ln ρ broadens
with time but only logarithmically

⇒ infinite-noise critical point, but in different
universality class than mean-field case

• Griffiths singularities in the life time of
finite-size systems, τN ∼ N1/κ

• Griffiths exponent κ saturates at κc = d

Critical behavior:

⟨ρ⟩ ∼ (ln t)−δ̄ with δ̄ = 1

ρst ∼ |r|β with β = 1/2

ξt ∼ ξz with z = 1

ln ξt ∼ |r|−ν̄∥ with ν̄∥ = 1/2

the usual correlation time
exponent ν∥ is formally infinite



Scaling theory

• density of active sites:

ρav(r, t, L) = (ln b)
−β/ν̄⊥ρav(r(ln b)

1/ν̄⊥, tb
−z

, Lb
−1

)

• survival probability (starting from single seed site)

Ps(r, t, L) = (ln b)
−β/ν̄⊥Ps(r(ln b)

1/ν̄⊥, tb
−z

, Lb
−1

)

• radius of spreading cluster and its number of sites

R(r, t, L) = b(ln b)
−yRR(r(ln b)

1/ν̄⊥, tb
−z

, Lb
−1

)

Ns(r, t, L) = b
d
(ln b)

−yNNs(r(ln b)
1/ν̄⊥, tb

−z
, Lb

−1
)

Exponents:

β = 1, ν̄⊥ = 1/2, z = 1

Time dependencies at
criticality:

ρav(t) ∼ (ln t)
−1

Ps(t) ∼ (ln t)
−1

R(t) ∼ t(ln t)
−yR

Ns(t) ∼ t
d
(ln t)

−yN
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Spreading simulations in 1d

Strong disorder:
Wλ(λ) = p δ(λ− λh) + (1− p) δ(λ− λh/20) with p = 0.8 and time interval ∆t = 6.

101 102 103 104 105

1.5

2.0

2.5

3.0 h (top to bottom)
 27.00
 27.20
 27.27
 27.35
 27.50
 27.701/

P
S

t

Survival Probability Ps

101 102 103 104 105

0.3

0.4

0.5

0.6

0.7

0.8

102 103 104 105

12

16

20

h (bottom to top)
 27.00   27.35
 27.20   27.50
 27.27   27.70

P
S

t

t

1/

 27.27
 27.20
 27.00



Spreading simulations in 1d
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Density decay simulations in 2D
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Inset (a): Scale factor ft vs. ln t, confirming the logarithmic broadening of P (x)

Inset (b): average density ⟨ρ(t)⟩ for varying infection rate λ



Temporal Griffiths phase

Life time of finite-size samples:
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Conclusions

• random environmental noise (temporal disorder) destabilizes clean absorbing state
transitions

• problem can be studied using real-time “strong noise” renormalization group

• leads to novel, exotic “infinite-noise” critical points at which the effective noise
amplitude diverges on long time scales

• implies enormous density fluctuations, density distribution at criticality becomes
infinitely broad (even on a logarithmic scale)

• renormalization group theory confirmed by numerical simulation for both the
mean-field case and finite dimensions

Infinite-noise critical points in temporally disordered systems are the
analogs of infinite-randomness critical points in spatially disordered

systems, but with the roles of space and time exchanged.

For more details see: Europhys. Lett. 112, 30002 (2015), arXiv:1507.05677 and arXiv:1603.08075


