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Abstract

Economics is a discipline in which there appears to be many opportunities for applications of time scales. The time scales
approach will not only unify the standard discrete and continuous models in economics, but also, for example, allows for payments
which arrive at unequally spaced points in time. We present a dynamic optimization problem from economics, construct a time
scales model, and apply calculus of variations to derive a solution. Time scale calculus would allow exploration of a variety of
situations in economics.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Time scale calculus is a relatively new theory (initiated in [1]) that unites the two approaches of dynamic modelling:
difference and differential equations. In principle, these two approaches are special cases of a more general theory of
time scale calculus. Time scale calculus theory is applicable to any field in which dynamic processes can be described
with discrete or continuous models. Because many economic models are dynamic models, the results of time scale
calculus are directly applicable to economics as well.

Economics is an ideal discipline for applications of time scales. Standard dynamic economic models are set up
in either continuous or discrete time. For example, in a discrete model, a consumer receives some income in a time
period and decides how much to consume and save during that same period. So, all decisions are assumed to be made
at evenly spaced intervals.

The time scales approach to the above maximization problem is much more flexible and realistic. For example, a
consumer receives income at one point in time, asset holdings are adjusted at a different point in time, and consumption
takes place at yet another point in time. Moreover, consumption and saving decisions can be modeled to occur with
arbitrary, time-varying frequency. It is hard to overestimate the advantages of such an approach over the discrete or
continuous models used in economics. Time scale calculus would allow exploration of a variety of situations in which
timing of the decisions impacts the decisions themselves.
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In this paper, the reader will find an economic application of the V-derivative and V-integral, first initiated by
Atici and Guseinov [2]. The paper is organized as follows. In Section 2, we present some preliminary results for the
V-derivative and nabla exponential function. In Section 3, we state and prove some basic theorems on calculus of
variations for the time scale case. We want to point out that we used the nabla notion (i.e. V-derivative, V-integral,
nabla exponential function) in this section, since our economics model in Section 4 relies heavily on this. The calculus
of variation has been studied with the delta notion in the papers by Bohner [3] and Hilscher and Zeidan [4]. To
demonstrate how the theory developed in Section 3 can be used in economics, Section 4 sets up a simple representative
agent without uncertainty to show how this type of model is solved in the time scale setting.

We refer to the books for further reading on calculus of variations for the continuous case [5,6] and the discrete
case [7]. For dynamic models in economics, we refer to the books [8—11].

2. Basic definitions on time scales

For our purposes, we let T be a time scale (a closed subset of R), [a, b] be the closed and bounded interval in T,
ie,[la,b] ={t € T:a <t <b}and a, b € T. For the reader’s convenience, we state a few basic definitions on a
time scale T [12].

Obviously, a time scale T may or may not be connected. Therefore we have the concept of forward and backward
Jjump operators as follows. Define o, p : T — T by

ot)=inf{s € T:s5s >t} and p()=sup{seT:s <t}

Ifo(@) =t 0@) > 1t,pt) =t p) < t,thent € T is called right-dense, right-scattered, left-dense, left-
scattered, respectively. The set T, which is derived from T is as follows: if T has a right-scattered minimum 71,
then T, = T — {#;}, otherwise T, = T. We also define the backwards graininess function v : T, +— [0, 00) as
v(t) =t — p().If f: T+ Risa function, we define the function f* : T, > R by fP(t) = f(p(¢)) forall t € Ty
and o9(r) = p°(t) = 1.

Definition 2.1. If f : T — R is a function and ¢ € T, then we define the nabla derivative of f at a point ¢ to be the

number fV (¢) (provided it exists) with the property that, for each ¢ > 0, there is a neighborhood of U of ¢ such that
ILf (@) — F)] = fYOp@) — 51| < elp(®) — 5],

foralls e U.

Note that in the case T = R, then fv(t) = f/(t), and if T = Z, then fv(t) =Vf@t)=f@)— f@t—1).

Definition 2.2. A function F : T — R we call a nabla-antiderivative of f : T — R provided that F Vi) = f@)
for all # € Ty. We then define the Cauchy V-integral from a to t of f by

'
/ f(s)Vs = F(t) — F(a) forallt € T.

Note that in the case T = R we have

b b
/ F(Vi = / Fdr,

and in the case T = Z we have
b b
[ rwvi= 3 rw.
a k=a+1

where a, b € T witha < b.

Definition 2.3. A function f : T — R is left-dense continuous (or ld-continuous) provided that it is continuous at
left-dense points in T and its right-sided limits exist at right-dense points of T.

If T = R, then f is 1d-continuous if and only if f is continuous.
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Definition 2.4. We say that a function p : T — R is v-regressive if
1—v(@®)p@) #0 forallr € Ty.
Define the v-regressive class of functions on T to be

Ry ={p:T — R: pisld-continuous and v-regressive}.

Definition 2.5. If p € R, then the nabla exponential function is defined by
t
ép(t,s) == exp (/ Sv(t)(p(r))V1:> fors,t €T,
S

where the v-cylinder transformation év is asin [13, p. 49].

t—s
Note that in the case T = R, then &y (7, 5) = ¢*“~), and if T = Z, then &y (7, 5) = (L) , where o € R\ {1].

1—a
Many nice properties and examples of the nabla exponential function can be found in the book by Martin Bohner
and Allan Peterson [13, Chapter 3].
For proof of the next theorem, we refer to Theorem 1.90 with A-derivative in [12].

Theorem 2.6 (Chain Rule). Let f : R — R be continuously differentiable and suppose that g : T — R is nabla
differentiable. Then f o g : T — R is nabla differentiable and the formula

1
(fog)v(t)z{ /0 (g +hvt)g” t)dh i g (1)

holds.

The following lemma is crucial in the proof of Theorem 3.1 in the next section.

Lemma 2.1. If f(t) is continuous on [p(a), b], where p(a) < b, and if

b

f()g®)Vei =0
p(a)

for every function g(t) € C[p(a), b] with g(p(a)) = g(b) =0, then f(t) = 0fort € [p(a), b].
Proof. Suppose that the function f(¢) is nonzero, say positive, at some point in [p(a), b]. Without loss of generality,
let’s choose [t1, 2] C [p(a), b]. Assume that f(fy) > 0 at #p € [#1, 12]. If we set

g() == —n +v) (2 — 1 + pn(h))

for ¢t € [t1, 2] and g(¢) = O otherwise.
Thus, we obtain a contradiction

b

n
f()g®)Vet = / f@OE —n+v@)(t2 —t + pn(t)Ve > 0.
n

p(a)

This completes the proof of the lemma. O
3. Main results

Assume that L(¢, u, v) is a class C2 function of (u, v) for each ¢ € [,oz(a), p(b)] C T.Lety e c! [pz(a), p(b)]
with y(p*(a)) = A, y(p(b)) = B, where

C'lp*(@), p(b)] = {y : [p*(@), p(b)] = R | y¥ is continuous on [p>(a), p(b)].}.

The simplest variational problem is to extremize (maximize or minimize)
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p(b) v
Jlyl = /2 )L(t,y(p(t)),y (1))Ve.
P

(a
We say that yg € C "[p%(a), p(b)] minimizes this variation problem if

Jlyol = JIyl
for all y € C'[p%(a), p(b)]. We say J has a local minimum at yo provided that there is a § > 0 such that

Jlyol = JIyl
forall y € C'[p2(a), p(b)] with ||y — yo|l < 8. Here we consider the norm

Iyl= max [y@|+ max [yV @)l
te[p?(a),p(b)] te[p2(a),p(b))c

In this section we develop necessary conditions for the simplest variational problem. Now let 4 : [p%(a), p(b)] —
R be any admissible variation, i.e., h € Cp%(a), p(b)] with h(p%(a)) = h(p(b)) = 0. Assume that this variational
problem has a local extremum at y.

Then we define

p(e) = J[y@®) +eh@)],

where —00 < € < o0.
Since ¢ has a local extremum at ¢ = 0, we have that

@' (0)=0
¢"(0) >0 (< 0)

in the local minimum (maximum) case.
Next we consider

p(b)

p(e) = /2( : L(t, y(p(1) + €h(p(@)), y¥ (1) + €h" (1)) V1.
p-(a

Differentiating with respect to €, we have

pb) ¢
¢'(e) = / —L(t, y(p(1)) + €h(p)), ¥ (t) + €h" 1))Vt
pz(a) de

p(b)
N / 2 >{L“(f’ Y(p@®) +eh(p®), y¥ (1) + eh” (1) h(p(®))
p=(a
+ Ly(t, y(p(®) + €h(p(®)), y¥ () + h” ()R (1)} V1.

Hence, we obtain
p(b)
¢'(0) = / iy L YO T + Lys (37, 7 DR O}V
p=(a

The integral

p(b)
/ Ly YR Ly ey YR
p=(a)

gives the first variation of J[y], denoted by Ji[A].
So a necessary condition for y(¢) to be a local minimum is

p(b)
Jilh] = f B YO @), YV OP () + Lyv (e, y (1), yV ()R (1)}VE =0
p(a

forall h € C'[p?(a), p(b)] with h(p%(a)) = h(p(b)) = 0.
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Using the properties of V-integral, we have

p(b)
]l[h] :/ {Lyp(t»ypvyv)hp+L}:V(t7yp7yv)hV}Vt
p(a)

p(a)
+ / Ly Y Ly (e, 30, YV
p=(a)

p(b)
= / {Lyo (1, y7, yVOhP + Lyv (1, y°, yV )V }Vi
p(a)

+(p(@) — p*(@){Lye (p(@), y(p*(@)), y¥ (p(@)h(p*(a))
+L,v(p(@), y(o* (@), y" (p@)h" (p(a))}

p(b)
=/ {Lyo(t, ¥, y))hP + L (t, y°, yV)hV}Vt
p(a)

+(p(@) — p*@)Lyv (p(a), y(p*(@). y¥ (p(@))h" (p(a))
and, using the equality (o (a) — p%(a))hY (p(a)) = h(p(a)) — h(p*(a)), we obtain

p(b)
Ji[h] = f {Lyo(t, ¥, y))WP + L (t, y°, yV)h V)Vt
pla)

+Lyw(p(@). y(0*@). ¥ (p(@))h(p(@)).
Integration by parts [12] gives

p(b)
= / o B ¥ RV + (L yvh)(p(b)) — (Lyvh)(p(a))
pla

p(b)
—/( : L}V,v(t, Y0 yRPVE+ (Lyvh)(p(a))
pla

o)
= / {Lyo (2,37, y IR — LG (1, y° y¥)hP) V1.
p(a)

Again, using the property of V-integral,

b
f o 7 Y = LYo, yP, yOIRPVE = (p(b) = b)(Lyo — L]} (0 (b)) =0,
P

we get
b
/ {Lyr (. y". %) = Lg (0. "y V1 =0 (€R))
p(a)
forall h € C'[p2(a), p(b)] with h(p%(a)) = h(p(b)) = 0.

Theorem 3.1. If a function y(t) provides a local extremum to the functional

p(b) v
Jlyl = f L{t, y(o (1)), y¥ (1) Vit
o

(a)
where y € C*[p2(a), p(b)] and y(p*(a)) = A, y(p(b)) = B, then y must satisfy the Euler-Lagrange equation
Lyo(t, 7, y¥) = Lis(t, 5, y¥) =0,

fort € [p(a),b].
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Proof. The necessary condition for J[y] to have an extremum for y = y() is that

b
O = [ (L5757 = Loty TNV =0 (32)
p(a)

for all admissible &#. Lemma 2.1 and the equality (3.1) imply that
Lyo(t, 3P, yY) = L (1, y?, yV) = 0 (3.3)
aresult known as a Euler-Lagrange equation. [
Now we state the theorem for the functional with several variables.

Theorem 3.2. A necessary condition for the curve y; = y;(t) fori = 1,2, ..., n, to be extremal of the functional

p(b)

J[yl,...,yn]z/ L@,y o 0 9 3 )Vt
p%(a)

where y; € C*[p%(a), p(b)] and yi(p*(a)) = A, yi(p(b)) = B, is that the functions y;(t) satisfy the Euler—Lagrange
equations

Lyo — Ljv =0.

Next we are concerned with minimizing

p(b)
Jly.ul = f L(t. y* (), () V1,
p%(a)

among all pairs (y, u) such that

y(t) = f(t, y° (1), ul (1)),

together with appropriate conditions on endpoints. We note that the state equation may be considered as a pointwise
constraint that can be treated by introducing a multiplier p(¢) such that pf(¢) is a V-differentiable function on
[,oz(a), p(b)]. Therefore, we consider the functional
v p®b) v
J Iy u, p,y 1= /2 [L(t, y° (@), uP (@) + pP (O (f @, Y’ (1), u’ @) — y )]V
p=(a)

The optimal solutions for our initial variational problem should be a solution of the Euler—Lagrange equation for
J* regarded as a function of the four variables (y, u, p, y¥). If we put

Gt uf, pP y? u”, p¥ yV) = L.y, uP) + pP(f (1, y° uP) = y¥),
then the Euler-Lagrange system can be written

Gy =Gle. Guw=G)v, Gp=Gy,
that is

Ly (1,5, u”) + pP fyo (2, y°,u?) + (p*)Y =0,

Lur(t,y7,u?) 4 p? fu (1, ¥, u”) = 0,
[y ufy—yY =0.
Theorem 3.3. Let f be linear in (y”, u”) and L concave in (y”, u”) for each fixed t. Then every solution of the

system of optimality with the appropriate endpoint conditions (including transversality) will be an optimal solution of
the variational problem.
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Proof. Assume that the pair (y, u) satisfies all the optimality conditions, and let (y, i) be any other admissible pair.
We will measure the difference

and conclude that it cannot be positive. This implies that (y, u#) is indeed optimal.
Due to the hypotheses of linearity and concavity assumed in the statement of the theorem, we can write
p(b)

Jy,ul — Jly,u]l = / |L(t, ¥°,a”) — L(t, y*, u”)|Vt
p*(a)

p(b)
< / (Lyr (1, 0, 4P) G — ¥P) + Lus (1, y° uP )@ — uPY) Vi
p%(a)

p(b)
= / (=P fyo (@, 37, u?) = (P)Y)GP = ¥P) = PP fur (8, ¥°, uP) (@ — uP)}V1
p

2(a)

p(b)
=— / o PPAGY =3+ fro(t, Y, uP)GP = y°) + fuo(t, y°, uP) (i — uP)} Vi
p=(a

p(b)
= —/2( : pPAf@, Y2 uP) — f(2, 37, 0°) + fye(t, y°, uP)(3* — y?)
p*(a

+ fur (&, Y2, u”)(@® — uP)}Vt
=0. O

4. A model in economics

Most dynamic optimization problems in economics are set up in the following form: a consumer is seeking to
maximize his lifetime utility subject to certain constraints. During each period in his life a consumer has to make
a decision concerning how much to consume and how much to spend. If the consumer consumes more today, the
“punishment” comes in the form of foregone consumption tomorrow. To be more precise, the punishment is not just
the consumption itself but the utility we derive from consumption. So, it is an optimal control model — the solution is
a function that describes optimal behavior for an individual. The solution shows how much one should consume each
period to insure that one achieves maximum lifetime consumption.

We will start by describing the basic intuition behind the problem, explaining why we choose particular functions
and constraints and developing some terminology.

Utility is the value function of the consumer that one wants to maximize. Utility can depend on numerous variables,
but it typically depends on consumption. In this simple example, utility depends only on consumption of some generic
product C. Utility u(C), or the satisfaction we derive from consumption, has u’(C) > 0 and u”(C) < 0. This means
that consumers always would like to consume more (because each additional unit generates positive utility) but each
additional unit consumed during the same period generates less utility than the previous unit consumed within the
same period. We call this property of utility function the Law of Diminishing Marginal Utility.

Discrete model:

What makes this a dynamic problem is that a consumer has to make decisions not just about one period but
about the sequence of C’s: Cy, C1, ..., Cr, where T can be a finite number or co (a consumer is a family that lives
forever). Because we have a limited amount of resources, there is a trade-off between consuming today and consuming
tomorrow. So the problem is to find a consumption path that would maximize lifetime utility U:

S

T 1 K

where Cs is consumption during period s, u is one-period utility, and U is the lifetime utility. There is also the
parameter § € (0, 1), which is the discount factor — we prefer to consume today rather than tomorrow. In other words,
we value future consumption less than current consumption, so we discount the future at the rate 6. Loosely speaking,
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8 is our internal interest rate, which reflects how much we are willing to give up today to increase consumption
tomorrow.
So, the problem can be expressed as the value function to be maximized subject to a certain constraint:

T s
1
max U = E (—) u(Cys)
= 1448

T
subject to A4y = (14 r)Ay + Ys — Cy, forall s € [0, T) and Ay (#) > 0.
In other words, we have to maximize our lifetime utility, but we are constrained by the fact that the value of our
consumption must be equal to the value of our income plus the assets that we might have. In addition to that, we

1

)
present value of the last period asset holding has to be nonnegative (the optimal level is, naturally zero — we want to
spend all the money we’ve got, and we don’t care about leaving money behind after we die; so, using our intuition,

we could make it an equality constraint).

T
have another constraint A7 ( > 0 that can be interpreted as “we are not allowed to borrow without limit:” The

Continuous model:

Following similar reasoning as above, we consider the problem of maximizing the lifetime utility, which is the sum
of instantaneous utilities

T
U= / u (Cy) e %ds
0

with respect to the path {Cy }sT=0’ subject to constraint
Al = Agr + Y, — Cs.

Time scales model:

We maximize

o(T)
U :/o u(C(p(s))e-s(p(s),0)Vs
subject to constraint

AV (s) =rA(p() + Y (p(s)) — C(p(s)), s €[a(0),T].

Note that this model includes the two above as special cases, namely T = Z and T = R, respectively.
In this model:

G(s,x,y,z,w) = u(x)e—s(p(s), a) + u(p(s)x —rz+w —Y(p(s))].
Without loss of generality, we can replace p(s) by ¢ and obtain
G(t,x,y,z,w) = u(x)é—s(t,0) + n@)x —rz+w—Y(®)],
so Euler’s equations become

u'(C)e—s(t,0) + (1) = 0.
—ru() = u¥ (1) =0.

We note that these equations provide a unification of the Euler—Lagrange equations from both the discrete (constant
time intervals) and continuous approaches. These equations also allow for more complicated applications than the
discrete and continuous models allow. A consumer might have income from work or asset holdings arriving at unequal
time intervals (say, from paychecks, dividend payments and rent payments arriving at different time intervals) and/or
make expenditures at unequal time intervals. Such a problem could conceivably be studied by a constant time interval
model or continuous model; however, the time scales approach allows for a more rigorous and probably more accurate
solution. We continue analyzing this model as follows.
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Substitution gives us the following dynamic equation:
—r[—u/(C(1))é_5(t, 0)] — u' (C(1))8¢_5(t,0) + &_s(p(1), O)[u (C(1))]¥ =0,
which reduces to
-s(p(@), O (CNIY =18 — rlé_s(t, 0)u'(C()).
Using a property of the nabla exponential function, namely ¢_s(o(¢), 0) = (1 + 8v(t))é_s(z, 0) [13, Theorem 3.15

(i1)], we have

W Ccon” =" _wcw @.1)
" EEETON ' '
By use of the chain rule [3], we have
W€ o u"(€O)+h®OCY@)dCY (@) s—r
uW(C@)) u'(C(1)) BTG

/ \%
We can think of % as the growth rate of marginal utility. Next we obtain

S§—r 1 0
<1+8v(t)) cvao

if the utility function is concave (u’ > 0, u” < 0). This last inequality states that the growth rate of consumption,
CV (1), is positive if 8 < r and negative when § > r. Therefore, if » > & (the market interest rate r is higher
than internal rate of preference &), the consumer will wait to consume until later periods. If § > r, the consumer is
impatient and will consume more in the earlier periods and less in the future periods. For example, if u(C) = In C, we
can express the left hand side of (4.1) in terms of the growth rate of consumption. So, given specific parameter values
for § and r and a jump function v(¢), we can find a dynamic equation for consumption on a time scale.

One possible economic interpretation of this equation is best understood by contrasting it with the discrete or
continuous cases. In those two conventional setups, the growth rate of consumption is constant. When the model is
solved using time scales, it shows that growth rates of consumption can fluctuate if consumption does not take place
at fixed intervals (due to v(¢)). Thus, the time scales model provides information for a problem for not evenly spaced
intervals, for which the standard continuous and discrete models do not. When the discount rate is equal to the interest
rate, § — r = 0 and the consumption level does not depend on the time scale.
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