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1 Introduction

In this paper, we consider a quasilinear dynamic equation

[
a(t)Φp(x∆)

]∆
= b(t)f(xσ), (1)

where a and b are real positive rd-continuous functions on a time scale T (an arbitrary
nonempty closed subset of the real numbers R), f : R 7→ R is continuous with uf(u) > 0
for u 6= 0 and Φp(u) = |u|p−2u with p > 1. Here, we assume that T is unbounded
above. The set of rd-continuous functions and the set of functions that are differentiable
and whose derivative is rd-continuous will be denoted in this paper by Crd and C1

rd,
respectively. By a solution we mean a delta-differentiable function x satisfying equation
(1) such that aΦp(x∆) ∈ C1

rd. x∆(t) turns out to be the usual derivative x′(t) if T = R
and the usual forward difference operator ∆x(t) = x(t + 1)− x(t) if T = Z, the set of
integers. Therefore, Equation (1) reduces to the quasilinear differential equation, see
Cecchi, Došlá and Marini [8],

[a(t)Φp(x′)]′ = b(t)f(x) (2)

when T = R as well as to the quasilinear difference equation, see Cecchi, Došlá and
Marini [7, 9],

∆[akΦp(∆xk)] = bkf(xk+1) (3)

when T = Z. In addition we also consider the special case of equation (1)

[
a(t)Φp(x∆)

]∆
= b(t)Φq(xσ) (4)

where q > 1.
Such studies are essentially motivated by the dynamics of positive radial solutions of

reaction-diffusion (flow through porous media, nonlinear elasticity) problems modelled
by the nonlinear elliptic equation

− div(α(|∇u|)∇u) + λf(u) = 0, (5)

where α : (0,∞) 7→ (0,∞) is continuous and such that δ(v) := α(|v|)v is an odd
increasing homeomorphism from R to R, λ is a positive constant (the Thiele modulus)
and f presents the ratio of the reaction rate at concentration u to the reaction rate at
concentration unity, see Diaz [10] and Grossinho and Omari [11]. If α(|v|) = |v|p−2,
then the differential operator in equation (5) is the one dimensional analogue of the
p–Laplacian ∆p(u) = div(|∇u|p−2∇u), and equation (5) leads to equation (2) when
T = R.

Our goal is to investigate the asymptotic behavior of all positive increasing solutions
of equation(1) on time scales. We have some conditions on certain integrals depending
on a and b to divide solutions into several disjoint subsets. The Tychonov fixed point
theorem is used as well.
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The setup of this paper is as follows: In Section 2, we briefly introduce preliminary
results on time scales. An introduction with applications and advances in dynamic
equations are given in [4, 5]. In Section 3, we consider the existence of bounded
solutions of (1) on T. In Section 4, we discuss a comparison criterion which gives
the existence of upper solutions. In Sections 5 and 6, we assume that µ(t) is delta-
differentiable on T and the existence of unbounded solutions of equations (4) and (1)
on T is investigated, respectively.

2 Preliminary Results

The forward jump operator and the backward jump operator on T are defined by σ(t) :=
inf{s > t : s ∈ T} ∈ T and ρ(t) := sup{s < t : s ∈ T} ∈ T for all t ∈ T, respectively. In
these definitions we put inf(∅) = supT and sup(∅) = inf T. If σ(t) > t, we say t is right-
scattered, while if ρ(t) < t, we say t is left-scattered. If σ(t) = t, we say t is right-dense,
while if ρ(t) = t, we say t is left-dense. The graininess function µ : T 7→ [0,∞) is defined
by µ(t) := σ(t) − t. We define the interval [t0,∞) in T by [t0,∞) := {t ∈ T : t ≥ t0}.
The set Tκ is derived from T as follows: If T has left-scattered maximum m, then
Tκ = T− {m}. Otherwise, Tκ = T.

Assume f : T 7→ R and let t ∈ Tκ. Then we define f∆(t) to be the number (provided
it exists) with the property that given any ε > 0, there is a neighborhood U of t such
that ∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

∣∣ ≤ ε |σ(t)− s|
for all s ∈ U . We call f∆(t) the delta derivative of f(t) at t.

It can be shown that if f : T 7→ R is continuous at t ∈ T and t is right-scattered,
then

f∆(t) =
f(x(σ(t)))− f(t)

µ(t)
,

while if t is right dense, then

f∆(t) = lim
s→t

f(t)− f(s)
t− s

,

if the limit exists. If f is differentiable at t, then

fσ(t) = f(t) + µ(t)f∆(t), where fσ = f ◦ σ. (6)

If f, g : T 7→ R are differentiable at t ∈ Tκ, then the product and quotient rules are as
follows:

(fg)∆ (t) = f∆(t)g(t) + fσ(t)g∆(t)

and (
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)gσ(t)
if g(t)gσ(t) 6= 0.
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We say f : T 7→ R is rd-continuous provided f is continuous at each right-dense point
t ∈ T and whenever t ∈ T is left-dense lims→t− f(s) exists as a finite number.

A function F : Tκ 7→ R is called an antiderivative of f : T 7→ R provided F∆(t) =
f(t) holds for all t ∈ Tκ. Every rd-continuous function has an antiderivative. In this
case we define the integral of f by

∫ t

a

f(s)∆s = F (t)− F (a) for t ∈ T.

If a ∈ T, supT = ∞, and f ∈ Crd on [a,∞), then we define the improper integral by
∫ ∞

a

f(t)∆t := lim
b→∞

∫ b

a

f(t)∆t

provided this limit exists, see Bohner and Guseinov [3].
The chain rule on T plays an important role in this paper (see the proof of Theorem

3.2) and is given as

(f ◦ g)∆(t) =
{∫ 1

0

f ′
(
g(t) + hµ(t)g∆(t)

)
dh

}
g∆(t), (7)

where f : R 7→ R is continuously differentiable and g : T 7→ R is delta differentiable,
see Bohner and Peterson [4, Theorem 1.90].

In the earlier paper by Akın–Bohner [2], the asymptotic behavior of all positive
decreasing solutions of (1) is considered. It is shown that any nontrivial solution of (1)
is eventually monotone and belongs to one of the two classes:

M+ := {x ∈ S : there exists T ≥ t0 such that x(t)x∆(t) > 0 for t ≥ T}
M− := {x ∈ S : x(t)x∆(t) < 0 on [t0,∞)},

where S is the set of nontrivial solutions of equation (1) on [t0,∞), see [2, Lemma 3.1].
Concerning the class M+ for equation (1), such a class can be empty when T = R, see
Kiguradze and Chanturia [17, Corollary 17.4]. However, it is not true when T = Z.
For instance,

x′′ = x2 sgnx

does not have solutions in the class M+, whereas the corresponding difference equation

∆2xn = x2
n+1 sgnxn+1

has positive increasing solutions.
We denote the subsets of M+ consisting of bounded and unbounded solutions of

(1) by M+
B and M+

∞, respectively, where

M+
B = {x ∈ M+ : lim

t→∞
|x(t)| < ∞}

and
M+
∞ = {x ∈ M+ : lim

t→∞
|x(t)| = ∞}.
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A solution x ∈ M+
∞ is said to be strongly increasing if limt→∞ |a(t)Φp(x∆(t))| = ∞ and

regularly increasing otherwise. The set of strongly increasing solutions and the set of
regularly increasing solutions will be denoted by M+

∞S and M+
∞R, respectively, where

M+
∞R = {x ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|a(t)Φp(x∆(t))| < ∞}

and
M+
∞S = {x ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|a(t)Φp(x∆(t))| = ∞}.

Notice that
M+ = M+

B ∪M+
∞ = M+

B ∪M+
∞R ∪M+

∞S .

Such sets are characterized by certain integrals

Y1 = lim
T→∞

∫ T

t0

Φp∗

(
1

a(t)

)
Φp∗

(∫ t

t0

b(s)∆s

)
∆t,

Y2 = lim
T→∞

∫ T

t0

Φp∗

(
1

a(t)

)
Φp∗

(∫ T

t

b(s)∆s

)
∆t,

Y3 = lim
T→∞

∫ T

t0

Φp∗

(
1

a(t)

)
∆t,

Y4 = lim
T→∞

∫ T

t0

b(t)∆t,

where Φp∗ is the inverse of the map Φp, i.e., Φp(Φp∗(u)) = Φp∗(Φp(u)) = u. Then
Φp∗(u) = |u|p∗−2u, where 1

p + 1
p∗ = 1. One can find the proof of the following result in

[2, Lemma 3.2] which gives the convergence or divergence of Y1, Y2, Y3 and Y4.

Lemma 2.1. We have

(i) If Y1 < ∞, then Y3 < ∞.

(ii) If Y2 < ∞, then Y4 < ∞.

(iii) If Y1 = ∞, then Y3 = ∞ or Y4 = ∞.

(iv) If Y2 = ∞, then Y3 = ∞ or Y4 = ∞.

(v) Y1 < ∞ and Y2 < ∞ if and only if Y3 < ∞ and Y4 < ∞.

3 Bounded Solutions of (1)

In this section the existence of bounded solutions of (1) is considered. We start with
necessary and sufficient conditions ensuring that M+

B 6= ∅.
Theorem 3.1. Equation (1) has a solution in the class M+

B if and only if Y1 < ∞.
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Proof. Let x ∈ M+
B . Without loss of generality assume x(t) > 0, x∆(t) > 0 on [t0,∞),

t ≥ t0. Therefore, we have

[
a(t)Φp(x∆)

]∆
= b(t)f(xσ) ≥ b(t)mf , (8)

where mf = min
u∈[x(t0),x(∞)]

f(u). Integrating inequality (8) from t0 to t yields

a(t)Φp(x∆(t)) ≥ a(t0)Φp(x∆(t0)) + mf

∫ t

t0

b(s)∆s ≥ mf

∫ t

t0

b(s)∆s

and so

x∆(t) ≥ Φp∗

(
mf

a(t)

∫ t

t0

b(s)∆s

)
. (9)

Integrating inequality (9) from t0 to t yields

x(t) ≥ x(t0) +
∫ t

t0

Φp∗

(
mf

a(s)

∫ s

t0

b(τ)∆τ

)
∆s,

which is the desired result when t →∞.
Conversely, we prove that M+

B 6= ∅. Define Mf = max
u∈[ 12 ,1]

f(u) and choose t1 ≥ t0

such that

Φp∗(Mf )
[∫ ∞

t1

Φp∗

(
1

a(t)

∫ t

t1

b(τ)∆τ

)]
≤ 1

2
.

Define X to be the Frechet space of all continuous functions on [t1,∞) endowed with
the topology of uniform convergence on compact subintervals of [t1,∞). Let Ω be the
nonempty subset of the Frechet space C[t1,∞) given by

Ω = {u ∈ C[t1,∞) :
1
2
≤ u(t) ≤ 1}.

Clearly Ω is bounded, closed and convex. Now we consider the operator T : Ω 7→
C[t1,∞) which assigns to any u ∈ Ω the continuous function T (u) = yu given by

yu(t) = T (u)(t) =
1
2

+
∫ t

t1

Φp∗

(
1

a(s)

∫ s

t1

b(τ)f(uσ(τ))∆τ

)
∆s.

Thus
1
2
≤ T (u)(t) =

1
2

+ Φp∗(Mf )
[∫ t

t1

Φp∗

(
1

a(s)

∫ s

t1

b(τ)∆τ

)
∆s

]
≤ 1,

which implies T (Ω) ⊆ Ω. One can show that T is continuous in Ω ⊂ X and relatively
compact. Finally, using the Tychonov fixed point theorem gives the existence of a
solution in M+

B , similar to the argument in [2, Theorem 4.1].

The following result gives a stronger result.
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Theorem 3.2. Assume Y1 < ∞ and

lim sup
|u|→∞

f(u)
Φp(u)

< ∞. (10)

Then every solution x of equation (1) in M+ is bounded, i.e., M+
∞ = ∅.

Proof. In view of (10) there exist two positive constants R and L such that

f(u)
Φp(u)

< L for u > R.

Assume there exists an unbounded solution x of equation (1) and without loss of
generality assume x(t) > R, x∆(t) > 0 for all t ≥ t0. From equation (1) we have

(
a(t)Φp(x∆(t))

Φp(x(t))

)∆

=
(
a(t)Φp(x∆(t))

)∆ 1
Φp(xσ(t))

+ a(t)Φp(x∆(t))
(

1
Φp(x(t))

)∆

=
b(t)f(xσ(t))
Φp(xσ(t))

− a(t)Φp(x∆(t))[Φp(x(t))]∆

Φp(x(t))Φp(xσ(t))
.

Integrating the above equation from t0 to t gives

a(t)Φp(x∆(t)
Φp(x(t))

≤ H + L

∫ t

t0

b(τ)∆τ, (11)

where H = a(t0)Φp(x∆(t0))
Φp(x(t0))

. If Y4 < ∞, then there exists a positive constant H1 such
that

a(t)Φp(x∆(t))
Φp(x(t))

≤ H1

or
x∆(t)
x(t)

≤ Φp∗

(
H1

a(t)

)
.

Then by (7),

[ln(x(t))]∆ = x∆(t)
∫ 1

0

1
x(t) + hµ(t)x∆(t)

dh ≤ x∆(t)
∫ 1

0

1
x(t)

dh =
x∆(t)
x(t)

.

This implies that

[ln(x(t))]∆ ≤ x∆(t)
x(t)

≤ Φp∗

(
H1

a(t)

)
.

Integrating the above inequality from t0 to t yields

ln(x(t)) ≤ ln(x(t0)) +
∫ t

t0

Φp∗

(
H1

a(τ)

)
∆τ.

As t →∞, this contradicts the fact that Y1 < ∞ implies Y3 < ∞ by Lemma 2.1 (i).
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If Y4 = ∞, then choose t1 > t0 such that

H < L

∫ t1

t0

b(τ)∆τ.

From inequality (11) we have for t ≥ t1

a(t)Φp(x∆(t))
Φp(x(t))

≤ 2L

∫ t

t0

b(τ)∆τ

or
x∆(t)
x(t)

≤ Φp∗(2L)Φp∗

(∫ t

t0

b(τ)
a(t)

∆τ

)
.

By (7), we obtain

ln(x(T )) ≤ ln(x(t0)) + Φp∗(2L)
∫ T

t0

Φp∗

(∫ t

t0

b(s)
a(t)

∆s

)
∆t.

As T →∞, this contradicts the fact that Y1 < ∞. Therefore M+
∞ = ∅.

Remark 3.1. In general Theorem 3.2 does not hold without the condition (10). When
T = Z, Cecchi, Došlá and Marini in [7, Example 1] show that xn = (n − 1)(4) is an
unbounded solution of the equation

∆((n− 3)(n− 4)∆xn) =
20

n(4)
f(xn+1), n > 4,

where n(k) = n(n−1) · · · (n−k +1) and f(u) = u2 sgnu. In this case,
f(u)
Φp(u)

= u sgnu

and Y1 < ∞.

The following corollary follows from Theorem 3.1, Lemma 1.1 and Theorem 3.2.

Corollary 3.1. Assume Y1 < ∞. Then M+
B 6= ∅ and M+

∞R = ∅. In addition, if (10)
holds, then M+

∞S = ∅, i.e., every solution of (1) in M+ is bounded.

Proof. When Y1 < ∞, M+
B 6= ∅ follows from Theorem 3.1. To prove M+

∞R = ∅, we
assume not. Then there exists a solution x of equation (1) in M+

∞R. Without loss of
generality, we assume that x(t) > 0 and x∆(t) > 0 for all t ≥ t0. Since a(t)Φp(x∆(t))
is bounded, there exists a positive constant m such that for all t ≥ t0,

x∆(t) ≤ Φp∗

(
m

a(t)

)
.

Integrating both sides of the above inequality from t0 to t gives us

x(t) ≤ x(t0) +
∫ t

t0

Φp∗

(
m

a(s)

)
∆s.

Since Y1 < ∞, Y3 < ∞ by Lemma 2.1. But this contradicts the fact that x is a solution
of equation (1) in M+

∞R as t →∞. Finally, the last claim follows from Theorem 3.2.
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4 The Comparison Criterion

In this section, we consider two quasilinear dynamic equations
[
a(t)Φp(x∆)

]∆
= b(t)g(xσ), (12)

and [
a(t)Φp(y∆)

]∆
= B(t)h(yσ), (13)

where a, b and B are real positive rd-continuous functions on T and functions g, h :
R 7→ R are continuous with ug(u) > 0, uh(u) > 0 for u 6= 0 and Φp(u) = |u|p−2u with
p > 1.

The following comparison criterion gives the existence of upper solutions.

Theorem 4.1. Suppose that B(t) ≥ b(t) and there exists a positive constant R such
that

|h(u)| ≥ |g(u)| for |u| ≥ R (14)

and h or g is strictly increasing for |u| ≥ R. Let x be a solution of equation (12) such
that |x(t0)| > R, x(t0)x∆(t0) > 0, t0 ∈ T. Then for any solution y of equation (13) in
M+ with |y(t0)| ≥ |x(t0)|, x(t0)y(t0) > 0 and

∣∣y∆(t0)
∣∣ ≥ ∣∣x∆(t0)

∣∣ it holds for t ≥ t0

|y(t)| ≥ |x(t)|
and ∣∣a(t)Φp(y∆(t))

∣∣ ≥ ∣∣a(t)Φp(x∆(t))
∣∣ .

Proof. Without loss of generality we consider solutions x(t) starting with a positive
value, i.e., x(t0) > 0. In view of [2, Lemma 3.1], x(t) and y(t) are increasing and so
x(t) > R, y(t) > R. Define for t ≥ t0

d(t) = y(t)− x(t).

Clearly, d(t0) ≥ 0 and d∆(t0) ≥ 0. In order to finish the proof it is enough to show
that d does not have a positive maximum in (t0,∞). Assume not, then there exists
t1 ∈ (t0,∞) such that

d(t1) = max{d(t) : t ∈ [t0,∞)} > 0

and
d(t) < d(t1) for t > t1.

One can show that ρ(t1) = t1 < σ(t1) is not possible and for cases ρ(t1) < t1 < σ(t1),
ρ(t1) < t1 = σ(t1) and ρ(t1) = t1 = σ(t1) we obtain

d∆(t1) ≤ 0 and d∆(ρ(t1)) ≥ 0.

Here, we refer to the paper by Akin [1] for the detail of the last claim. We define

G(t) = a(t)
[
Φp(y∆(t))− Φp(x∆(t))

]
.
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Then we have

G∆(t) = B(t)h(yσ(t))− b(t)g(xσ(t))

≥ b(t) [h(yσ(t))− g(xσ(t))] .

By inequality (14) we obtain

G∆(t) ≥ b(t) [h(yσ(t))− h(xσ(t))] , G∆(t) ≥ b(t) [g(yσ(t))− g(xσ(t))] .

Since d(t1) > 0, the monotonicity of h or g gives G∆(ρ(t1)) > 0.
For the cases ρ(t1) < t1 < σ(t1) and ρ(t1) < t1 = σ(t1), we obtain G(t1) ≤ 0 and

G(ρ(t1)) > 0 by the monotonicity of Φp. On the other hand, by equation (6) we obtain

Gσ(ρ(t1)) = G(ρ(t1)) + µ(ρ(t1))G∆(ρ(t1)) > 0.

Since σ(ρ(t1)) = t1 in these cases, we have Gσ(ρ(t1)) = G(t1). But this gives a
contradiction.

For the case ρ(t1) = t1 = σ(t1), we obtain G∆(t1) > 0 and G(t1) = 0 since d(t1) > 0,
d∆(t1) = d∆(ρ(t1)) = 0 and by the monotonicity of h or g. Therefore, there exists δ > 0
such that lim

t→t+1

G∆(t) = G∆(t1) > 0. This implies that G(t) is strictly increasing on

(t1, t1 + δ] and so G(t) > 0 on (t1, t1 + δ]. This ensures that d∆(t) > 0 on (t1, t1 + δ],
and so d is strictly increasing on (t1, t1 + δ]. But this gives a contradiction.

Therefore, d does not have a positive maximum on (t0,∞) for all cases and so
d(t) ≥ 0 on [t0,∞). Since y∆(t) − x∆(t) = d∆(t) ≥ 0 for t ≥ t0, the monotonicity of
Φp yields the second part of the result.

Remark 4.1. In the above result we have to assume that h or g is strictly increasing
due to the case where ρ(t1) = t1 = σ(t1). Since we do not have dense points when
T = Z, it is enough to assume that h or g is nondecreasing, see [7, Theorem 3]. When
T = R, there exists a comparison result only for solutions of equations (12) and (13)
when h = KΦp, K > 0, see [8, Theorem 7].

5 Reciprocal Principle

In this section, we study the existence of unbounded solutions of equation (4) on T.
From now on we assume that µ(t) is delta-differentiable on T. Let x be a solution of
equation (4), then y = a(t)Φp(x∆(t)) is a solution of the reciprocal equation

[
1

Φq∗(b(t))
Φq∗(y∆)

]∆

=
[
1 + µ∆(t)

] 1
Φp∗(aσ(t))

Φp∗(yσ), (15)

where p∗ and q∗ are conjugate numbers of p and q, respectively. Equation (15) follows

from the equation (4) by replacing a with
1

Φq∗(b(t))
and b with

[
1 + µ∆(t)

] 1
Φp∗(aσ(t))

,
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where we use xσ∆ =
[
1 + µ∆

]
x∆σ, see Bohner and Tisdell [6]. Notice that for solutions

x of equation (4) and y of equation (15) it holds that

x ∈ M+ if and only if y ∈ M+.

Also, Y3 for equation (4) plays the same role as Y4 for equation (15) and vie versa,
analogously Y4 for equation (4) plays the same role as Y3 for equation (15). Similarly,
for equation (15) the integrals Y1 and Y2 become

Y5 = lim
T→∞

∫ T

t0

b(t)Φq

(∫ t

t0

(
1 + µ∆(s)

)
Φp∗

(
1

aσ(s)

)
∆s

)
∆t

and

Y6 = lim
T→∞

∫ T

t0

b(t)Φq

(∫ T

t

(
1 + µ∆(s)

)
Φp∗

(
1

aσ(s)

)
∆s

)
∆t,

respectively. Because of p ≤ q if and only if q∗ ≤ p∗ and the reciprocity principle we
have the following corollary.

Corollary 5.1. We obtain

(i) if p ≥ q and Y5 < ∞, then every solution x of equation (4) in M+ satisfies
lim

t→∞
a(t)Φp(x∆(t)) < ∞, i.e., M+

∞S = ∅;

(ii) if Y5 = ∞, then aΦp(x∆) of every solution x of equation (4) in M+ is unbounded;

(iii) if Y1 = ∞ and Y5 = ∞, then every solution of equation (4) in M+ is strongly
increasing, i.e., M+ = M+

∞S 6= ∅;
(iv) if Y1 = ∞ and Y5 < ∞, then equation (4) has a solution in M+

∞R, i.e., M+
∞R 6= ∅.

Proof. To prove part (i) we apply Theorem 3.2 to the reciprocal equation (15) and
obtain that every solution of equation (15) in M+ is bounded, i.e.,

lim
t→∞

y(t) = lim
t→∞

a(t)Φp(x∆(t)) < ∞.

To prove part (ii) we apply Theorem 3.1 to the reciprocal equation (15). The proof of
(iii) follows from Theorem 3.1 for equation (4) and part (ii). For part (iv) we apply
Theorem 3.1 to obtain M+

B = ∅ for equation (4), i.e., M+ = M+
∞. Applying Theorem

3.1 to the reciprocal equation (15) completes the proof.

6 Unbounded Solutions of (1)

Theorem 4.1 and Corollary 5.1 give us the existence of unbounded solutions of equation
(1).

Theorem 6.1. Assume (10) holds. If Y5 < ∞, then equation (1) does not have
solutions in M+

∞S, i.e., M+
∞S = ∅.
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Proof. Since (10) holds, there exist two positive constants L and R such that

f(u) ≤ LΦp(u) for u ≥ R.

Let x(t) be a solution of equation (1) in M+
∞S and without loss of generality assume

x(t) ≥ R and x∆(t) > 0 for t ∈ [t0,∞). From Theorem 4.1 with h(u) = LΦp(u),
g(u) = f(u) and B(t) = b(t) for any solution y ∈ M+

[
a(t)Φp(y∆(t))

]∆
= b(t)LΦp(yσ(t)), (16)

with y(t0) ≥ x(t0) and y∆(t0) ≥ x∆(t0) it holds for t ≥ t0

a(t)Φp(y∆(t)) ≥ a(t)Φp(x∆(t)). (17)

By Corollary 5.1 (i), equation (16) does not have solutions in M+
∞S . But inequality

(17) gives a contradiction as t →∞.

Remark 6.1. In general, Theorem 6.1 does not hold without the condition (10) when
T = Z. In [7, Example 2] the equation

∆2xn =
2

en(n+1) − 1
f(xn+1), n > 1,

is considered where f(u) = |eu−1| sgnu. It is shown that xn = n(n−1) is an unbounded
solution of the above equation and belongs to one of the class M+

∞s. In this case, for
any q > 1, Y5 < ∞ and (10) is not verified.

Theorem 6.2. Assume that there exists q > 1 such that

lim sup
|u|→∞

f(u)
Φq(u)

< ∞. (18)

If Y1 = ∞ and Y5 < ∞, then equation (1) has a solution in M+
∞R, i.e., M+

∞R 6= ∅.
Proof. By (18), there exist positive constants L and R such that

f(u) ≤ LΦq(u) for u ≥ R.

By Corollary 5.1(iv), there is a solution y of

[
a(t)Φp(y∆(t))

]∆
= b(t)LΦq(yσ(t))

in M+
∞R and without loss of generality assume y(t) ≥ R and y∆(t) > 0 for t ∈ [t0,∞).

Let x be a solution of equation (1) with x(t0) = y(t0) and x∆(t0) = y∆(t0). From
Theorem 4.1 with h(u) = LΦq(u), g(u) = f(u) and B(t) = b(t), we obtain (17) and so
lim sup

t→∞
a(t)Φp(x∆(t)) < ∞ for t ∈ [t0,∞). By Theorem 3.1, solution x belongs to M+

∞

since Y1 = ∞ and so M+
∞R 6= ∅.
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Remark 6.2. When T = Z, in [7, Example 3] the equation

∆ [∆xn] = e−nf(xn+1), n ≥ 1,

is considered where f : R 7→ R is continuous with uf(u) > 0 for u 6= 0 and |f(u)| = eu2

for |u| ≥ 1 to show that the condition (18) cannot be dropped in Theorem 6.2.
We have the following corollary for equation (1). It follows from Theorems 3.1, 6.1

and 6.2.

Corollary 6.1. Assume that Y1 = ∞ and Y2 < ∞. Then M+
B = ∅. In addition, if

there exists q > 1 such that (18) holds, then M+
∞R 6= ∅. If (10) holds, then M+

∞S = ∅.
Therefore, if there exists q > 1 such that (18) holds and (10) is verified, then every
solution of (1) in M+ is regularly increasing.

Theorem 6.3. Suppose that there exists q > 1 such that

lim inf
|u|→∞

f(u)
Φq(u)

> 0. (19)

If Y1 = Y5 = ∞, then every solution of equation (1) in M+ belongs to M+
∞S, i.e.,

M+
∞R = M+

B = ∅.
Proof. By Theorem 3.1, it is enough to show that M+

∞R = ∅ since Y1 = ∞ implies
M+

B = ∅. From (19), there exist positive constants l and R such that

f(u) ≥ lΦq(u) for u ≥ R.

Let x be a solution of equation (1) in M+
∞R and without loss of generality assume

x(t) ≥ R and x∆(t) > 0 for t ≥ t0. Let z be a solution of equation
[
a(t)Φp(z∆(t))

]∆
= b(t)lΦq(zσ(t)

with z(t0) = x(t0), z∆(t0) = x∆(t0). From Theorem 4.1 with h(u) = f(u), g(u) =
lΦq(u) and B(t) = b(t) it holds for t ≥ t0

a(t)Φ(x∆(t)) ≥ a(t)Φp(z∆(t)). (20)

By Corollary 5.1 (iii), z belongs to M+
∞S . But (20) gives a contradiction as t →∞.

Remark 6.3. When T = Z, the condition (19) cannot be dropped in Theorem 6.3 for
the equation

∆
[

1
n + 1

∆xn

]
=

2n

n + 2
f(xn+1), n > 1,

where f : R 7→ R is continuous with uf(u) > 0 for u 6= 0 and |f(u)| = 1
|u| for |u| ≥ 1. It

is shown that xn = n(n− 1) belongs to the class M+
∞R. In this case, Y1 = ∞, Y5 = ∞

and lim
u→∞

f(u)
Φq(u) = 0 for any q > 1, see [7, Example 4].
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