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Abstract

We consider quasilinear dynamic equations whose solutions are classified into dis-
joint subsets by certain integral conditions. In particular, we investigate the asymp-
totic behavior of solutions approaching zero for quasilinear dynamic equations.
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1. Introduction and Preliminary Results

The theory of time scales, T (nonempty closed subsets of real numbers) was initiated
by Stefan Hilger in his PhD dissertation [12] in 1988 in order to unify continuous and
discrete analysis. The theory of dynamic equations on time scales helps us not only to
avoid proving results twice but also to extend them for other time scales such as the set of
all integer multiples of a number h > 0, the set of all integer powers of a number q > 1.
We refer readers the books by Bohner and Peterson [4, 5] for an excellent introduction
with applications and advances in dynamic equations.

In this paper, we consider a quasilinear dynamic equation

[
a(t)�p(x�)

]� = b(t)f (xσ ), (1.1)

where f : R �→ R is continuous with uf (u) > 0 for u �= 0, �p(u) = |u|p−2u with
p > 1, and a and b are real positive rd-continuous functions on T. Throughout this paper
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we assume that T is unbounded above. By a solution we mean a delta-differentiable
function x satisfying equation (1.1) such that the delta derivative of a�p(x�) is rd-
continuous.

Such studies are essentially motivated by the dynamics of positive radial solutions of
reaction-diffusion (flow through porous media, nonlinear elasticity) problems modelled
by the nonlinear elliptic equation

− div(α(|∇u|)∇u) + λf (u) = 0, (1.2)

where α : (0, ∞) �→ (0, ∞) is continuous and such that δ(v) := α(|v|)v is an odd
increasing homeomorphism from R to R, λ is a positive constant (the Thiele modulus)
and f presents the ratio of the reaction rate at concentration u to the reaction rate at
concentration unity, see Diaz [10] and Grossinho and Omari [11]. If α(|v|) = |v|p−2,
then the differential operator in equation (1.2) is the one dimensional analogue of the
p-Laplacian �p(u) = div(|∇u|p−2∇u), and equation (1.2) leads to the quasilinear
differential equation (i.e., when T = R)

[a(t)�p(x′)]′ = b(t)f (x).

It is shown in the paper by Akın-Bohner [2, Lemma 3.1] that any nontrivial solution of
(1.1) is eventually monotone and belongs to one of the two classes:

M+ := {x ∈ S : there exists T ≥ t0 such that x(t)x�(t) > 0 for t ≥ T }
M− := {x ∈ S : x(t)x�(t) < 0 on [t0, ∞)},

where S is the set of nontrivial solutions of equation (1.1) on [t0, ∞). Asymptotic
behavior of solutions in M+ and M− on T is considered in the papers by Akın-Bohner
[2, 3], respectively.

The subclasses

M−
B = {x ∈ M− : lim

t→∞ x(t) = l �= 0},
M−

0 = {x ∈ M− : lim
t→∞ x(t) = 0}

are characterized by certain integrals

Y1 = lim
T →∞

∫ T

t0

�p∗
(

1

a(t)

)
�p∗

(∫ t

t0

b(s)�s

)
�t,

Y2 = lim
T →∞

∫ T

t0

�p∗
(

1

a(t)

)
�p∗

(∫ T

t

b(s)�s

)
�t,

Y3 = lim
T →∞

∫ T

t0

�p∗
(

1

a(t)

)
�t,

Y4 = lim
T →∞

∫ T

t0

b(t))�t,
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where �p∗ is the inverse of the map �p, i.e., �p(�p∗(u)) = �p∗(�p(u)) = u. Then

�p∗(u) = |u|p∗−2u, where
1

p
+ 1

p∗ = 1. The following results are shown in [2, Lemma

3.2, Theorem 4.1 and Theorem 4.2].

Lemma 1.1.

(i) If Y1 < ∞, then Y3 < ∞.

(ii) If Y2 < ∞, then Y4 < ∞.

(iii) If Y1 = ∞, then Y3 = ∞ or Y4 = ∞.

(iv) If Y2 = ∞, then Y3 = ∞ or Y4 = ∞.

(v) Y1 < ∞ and Y2 < ∞ if and only if Y3 < ∞ and Y4 < ∞.

Theorem 1.2.

(i) Y2 = ∞ if and only if M−
B = ∅.

(ii) Y1 < ∞ and Y2 < ∞ implies M−
0 �= ∅ and M−

B �= ∅, i.e., M− �= ∅.

Remark 1.3. When T = Z, it is shown in [7] that equation (1.1) has at least one solution
in M−. However, M− can be empty when T = R, see [13].

Let q > 1 and consider the integral

Yq = lim
T →∞

∫ T

t0

b(t)�q

(∫ T

σ(t)

�p∗
(

1

a(s)

)
�s

)
�t.

The following lemma can be shown as Lemma 1.1.

Lemma 1.4.

(i) If Yq < ∞, then Y3 < ∞.

(ii) If Yq = ∞, then Y3 = ∞ or Y4 = ∞.

(iii) Yq < ∞ and Y2 < ∞ if and only if Y3 < ∞ and Y4 < ∞.

Since the quasiderivative

x[1](t) := a(t)�p(x�(t)) (1.3)
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of any solution x ∈ M− is either positive decreasing or negative increasing, lim
t→∞ x[1](t)

must be finite. Hence M−
0 can be divided into

M−
0R =

{
x ∈ M− : lim

t→∞ x(t) = 0, lim
t→∞ x[1](t) = c �= 0

}

M−
0S =

{
x ∈ M− : lim

t→∞ x(t) = 0, lim
t→∞ x[1](t) = 0

}
.

Solutions in M−
0R and M−

0S are called regularly decaying solutions and strongly decaying
solutions, respectively. Clearly,

M− = M−
B ∪ M−

0 = M−
B ∪ M−

0R ∪ M−
0S.

The following is also shown in the paper by Akın-Bohner [2, Lemma 4.1].

Lemma 1.5. Y3 = ∞ implies for any x ∈ M−

lim
t→∞ x[1](t) = 0.

The purpose of this paper is to consider the asymptotic behavior of solutions in M−
0R

and M−
0S . In the last section, we give necessary conditions to obtain the existence and

uniqueness of solutions of boundary value problems in M−
0 . See Cecchi, Došlá and

Marini [6] when T = R and [7–9] when T = Z.

2. Limit Behavior

The next two results give conditions ensuring that M−
0R and M−

0S are empty.

Theorem 2.1. M−
0R = ∅ if any of the following conditions holds:

(i) Y3 = ∞;

(ii) there exists q > 1 such that

lim inf
u→0

f (u)

�q(u)
> 0 (2.1)

and Yq = ∞.

Proof. (i) follows from Lemma 1.5. To prove (ii) we assume thatY3 < ∞. Otherwise, the
assertion follows from (i). Without loss of generality, we assume x is a positive solution
of (1.1) in M−

0R, i.e., x(t) → 0 and x[1](t) → c �= 0 as t → ∞. Then there exists l > 0

such that x[1](t) < −l for large t . Therefore, x(t) ≥ �p∗(l)

∫ ∞

t

�p∗
(

1

a(τ)

)
�τ . By

(2.1), there exists a positive constant h such that for all u ∈ (0, x(t0)] we have

f (u) ≥ h�q(u).
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This implies that

f (xσ (t)) ≥ h�q

(
�p∗(l)

∫ ∞

σ(t)

�p∗
(

1

a(s)

)
�s

)

and so

(x[1])�(t) ≥ h1b(t)�q

(∫ ∞

σ(t)

�p∗
(

1

a(s)

)
�s

)
,

where h1 = h�q(�p∗(l)). By integrating from t to ∞ we have

−x[1](t) ≥ h1

∫ ∞

t

b(τ )�q

(∫ ∞

σ(τ)

�p∗
(

1

a(s)

)
�s

)
�τ.

But this contradicts to the boundedness of x[1]. �

Theorem 2.2. M−
0S = ∅ if any of the following conditions holds:

(i) Y2 < ∞ and

lim sup
u→0

f (u)

�p(u)
< ∞; (2.2)

(ii) there exists q ≥ p such that

lim sup
u→0

f (u)

�q(u)
< ∞ (2.3)

and Yq < ∞.

Proof. Let x ∈ M−
0S and without loss of generality, we assume that x > 0. (2.2) implies

that there exists a positive constant H1 such that for all u ∈ (0, x(t0)] we have

f (u) ≤ H1�p(u). (2.4)

Integrating equation (1.1) twice from t to ∞ we obtain

x(t) =
∫ ∞

t

�p∗
(

1

a(τ)

∫ ∞

τ

b(s)f (xσ (s))�s

)
�τ

≤ H1

∫ ∞

t

�p∗
(

1

a(τ)

∫ ∞

τ

b(s)�p(xσ (s))�s

)
�τ

≤ H1�p∗
(
�p(xσ (t))

) ∫ ∞

t

�p∗
(∫ ∞

τ

b(s)

a(τ )
�s

)
�τ,

where we used (2.4) as well. But

1 <
x(t)

xσ (t)
≤ H1

∫ ∞

t

�p∗
(∫ ∞

τ

b(s)

a(τ )
�s

)
�τ,
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and we obtain a contradiction as t → ∞. To prove (ii), we let x ∈ M−
0S and without loss

of generality, we assume that x > 0. From (1.3), we have

�q(x
σ (t)) ≤ �q

(
�p∗(−x[1](t))

)
�q

(∫ ∞

σ(t)

�p∗
(

1

a(τ)

)
�τ

)
.

From (2.3), there exists a positive constant H2 such that for all u ∈ (0, x(t0)] we have

f (u) ≤ H2�q(u).

Therefore, we obtain that

(x[1])�(t) ≤ H2b(t)�q

(
�p∗(−x[1](t))

)
�q

(∫ ∞

σ(t)

�p∗
(

1

a(τ)

)
�τ

)
.

Integrating the above inequality from t to ∞ we have

−x[1](t)
�q(�p∗(−x[1](t)))

≤ H2

∫ ∞

t

b(τ )�q

(∫ ∞

σ(τ)

�p∗
(

1

a(s)

)
�s

)
�τ.

Since Yq < ∞ and
u

�q(�p∗(u))
= 1

u
q−1
p−1

,

we get a contradiction to the assumption that x ∈ M−
0S . �

The next two results give conditions ensuring that the classes M−
0R and M−

0S are not
empty.

Theorem 2.3. M−
0R �= ∅ if any of following conditions holds.

(i) Y2 < ∞, Yq < ∞ and (2.2) holds;

(ii) there exists q > 1 such that (2.3) holds and Yq < ∞.

Proof. (i) follows from Lemma 1.1 and 1.4, Theorem 1.2 (ii), and Theorem 2.2 (i). To
prove (ii) we observe that (2.3) implies the existence of a positive constant M such that
for all u ∈ (0, 1]

f (u) ≤ M�q(u). (2.5)

By Lemma 1.4, Yq < ∞ implies Y3 < ∞. Choose t1 ≥ t0 so large that
∫ ∞

t1

b(τ)�q

(∫ ∞

σ(τ)

�p∗
(

1

a(s)

)
�s

)
�τ <

1

2M
. (2.6)

Define X to be the Banach space of all continuous functions on [t1, ∞) and endowed
with the topology of the supremum norm. Let � be the nonempty subset of X given by

� =
{
u ∈ X :

∫ ∞

t

�p∗
(

1

2a(τ)

)
�τ ≤ u(t) ≤

∫ ∞

t

�p∗
(

1

a(τ)

)
�τ

}
.
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Clearly, � is bounded, closed and convex. Now we consider the operator T : � �→ X

which assigns to any u ∈ �

T u(t) =
∫ ∞

t

�p∗
(

1

a(τ)

(
1

2
+

∫ ∞

τ

b(s)f (uσ (s))�s

))
�τ ≥

∫ ∞

t

1

�p∗(2a(τ))
�τ.

By (2.5) and (2.6), we obtain∫ ∞

t1

b(τ)f (uσ (τ ))�τ ≤
∫ ∞

t1

Mb(τ)�q(u
σ (τ ))�τ

≤ M

∫ ∞

t1

b(τ)�q

(∫ ∞

σ(τ)

�p∗
(

1

a(s)

)
�s

)
�τ

<
1

2
.

Therefore,

T u(t) ≤
∫ ∞

t

�p∗
(

1

a(τ)

)
�τ

and so T (�) ⊂ �. To complete the proof, it is enough to show the relative compactness
of T (�), the continuity of T in � to apply the Schauder fixed point theorem. The details
are left to the reader. �

Remark 2.4. When T = Z, (2.2) in Theorem 2.3 (i) is not assumed to show that
M−

0R �= ∅, see [8].

Theorem 2.5. Every solution in M− is in M−
0S if Y2 = Yq = ∞ and there exists q > 1

such that (2.1) holds.

Proof. We use Theorem 1.2 (i) and Theorem 2.1 (ii). �

3. Boundary Value Problems in M−
0

In this section, we assume that f is nondecreasing and consider two boundary problems
in M−

0 . The existence and uniqueness of solutions of boundary value problems are shown
in [9] for half-linear difference equations, where f (x) = �p(x). We now start with the
following lemma which is essential for the last two theorems.

Lemma 3.1. If x and y are solutions of equation (1.1) such that

x(t0) ≥ y(t0) > 0, x�(t0) > y�(t0),

then for t > t0 ∈ T

x(t) > y(t), x�(t) > y�(t).

Proof. Let x and y be two differentiable solutions of equation (1.1) such that

x(t0) ≥ y(t0) > 0 and x�(t0) > y�(t0).
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Set d(t) := x(t) − y(t). Then we have

d(t0) ≥ 0, d�(t0) > 0.

It is enough to show that d does not have a positive maximum. Assume not, then there
exists t1 ≥ t0 such that

d(t1) = max{d(t) : t ∈ [t0, ∞)} > 0

and
d(t) < d(t1) for t > t1.

One can show as in the proof of [1, Theorem 5] that t1 cannot be left-dense and right-
scattered at the same time and for other cases we obtain

d�(t1) ≤ 0, d�(ρ(t1)) ≤ 0.

Define
G(t) = a(t)

[
�p(y�(t)) − �p(x�(t))

]
.

Monotonicity of f and the positivity of a and b implies

G�(t) = b(t)
[
f (yσ (t)) − f (xσ (t))

]
.

Since d(t1) > 0, G�(ρ(t1)) < 0.

Case 1: ρ(t1) < t1 < σ(t1) and ρ(t1) < t1 = σ(t1). In this case, we obtain G(t1) ≥ 0
and G(ρ(t1)) < 0. Therefore

Gσ(ρ(t1)) = G(ρ(t1)) + µ(ρ(t1))G
�(ρ(t1)) < 0.

Since t1 cannot be left-dense and right-scattered, σ(ρ(t1)) = t1. Therefore, this gives us
a contradiction.

Case 2: ρ(t1) = t1 = σ(t1). In this case, G�(t1) < 0 and G(t1) = 0. This implies that
G(t) < 0 in a right neighborhood I of t1, i.e., d�(t) > 0 for t ∈ I , which gives us a
contradiction.

Therefore, d does not have a positive maximum. This completes the proof. �

Theorem 3.2. Assume conditions in Theorem 2.3 (i) or (ii). Then for any ν �= 0 the
boundary value problem of equation (1.1) with

x(t0) = ν, x ∈ M−
0R (3.1)

has a unique solution.

Proof. The existence of solutions of boundary value problem (1.1) with (3.1) for any
ν �= 0 follows from Theorem 2.3. Without loss of generality, assume that there exist
solutions x and y of the boundary value problem of equation (1.1) with x(t0) = y(t0) =
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ν > 0 and y�(t0) < x�(t0). By the proof of Lemma 3.1, d(t) > 0 and is increasing for
t > t0. But this contradicts the fact that lim

t→∞ d(t) = 0. �

Theorem 3.3. Assume Y1 < ∞ and Y2 < ∞. Then for any ν �= 0 the boundary value
problem of equation (1.1) with

x(t0) = ν, x ∈ M−
0 (3.2)

has a unique solution.

Proof. The existence of solutions of boundary value problem (1.1) with (3.2) for any
ν �= 0 follows from Theorem 1.2. The uniqueness can be shown as in the proof of
Theorem 3.2. �
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