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Abstract

We study recessive solutions of nonoscillatory half-linear dynamic equations. Re-
cessive solutions are characterized using limit and integral properties.
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1 Introduction
In this paper, we consider the half-linear dynamic equation
[@t)DPOE)+bt)P(XC(t) =0, t>ty toeT (1.2)

whereT is a time scale, a closed subset of real numbers. We assumsuiiait= co,
1 L . .
®(u) = [u[P2u, p> 1, anda, b are positive right-dense continuous functionson

Throughout this paper, by a solution of (1.1) we mean a nontrivial solution of (1.1).
The recessive solution for the linear dynamic equation

[a(t)x*(t)]* + b(t)x(t) = 0

has been characterized by the similar way as in the continuous cas& &) and the
discrete case (i.€ = N) , see [4, Theorem 4.61].

The extension of the notion of a recessive solution to the half-linear differential equation
and difference equation is in general difficult problem and only partial results have been
obtained, see e.g. [6, 7, 9, 10, 11] and [8, 12], respectively. We refer [15] for the discussion
why f_}\ has to be a right-dense continuous functiorilon
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In this paper we study recessive solutions for (1.1) under the assumption
Z [ee] Z [ee]
b(r)cb< B8 )m<oo toeT (1.2)
to o(r) P*(a(s)) ’ ’
where®* is the inverse function aob.

In the next section, we give a brief introduction to a time scale. In the third section, we
obtain some essential results on solutions of half-linear dynamic equations and the Gronwall
inequality on time scales. In the last two sections, we consider recessive solutions of half-
linear dynamic equations.

2 Time Scale Calculus

In this section, we only mention preliminary results on time scales. More details of dynamic
eqguations with applications can be found in [4, 5].

The forward jump operatoro(t) :=inf{s>t:se T} € T, for allt € T gives us the
next point inT while thebackward jump operatop(t) := sup{s<t:se T} € T for all
t € T gives us the previous point . Thegraininess functiop: T — [0, «) is the distance
between two consecutive pointsThi.e.,u(t) := o(t) —t.

We defineT* = T — {m} if mis a left-scattered maximum, otherwi® = T. We
assumef,g: T — R and lett € T*. Delta derivativef2(t) of f(t) att is defined to be the
number (provided it exists) if for given argy> 0O, there is a neighborhoaddl of t such that

|[f(a(t)) - f(s)] - FA()[o(t) — 5[ <elo(t) 5|

for all s€ U. The delta derivativé? is the usual derivative i’ = R and the usual forward
difference operator iff = Z.

- . | sy FOO) =T o cn

For right-scattered pointg(t) >t) in T, we havef2(t) = o) while f&(t) =

f(t) - f(s)

Isqu s for right-dense pointsa((t) =t) in T if the limit exists. For any € T, we
havefo(t) = f(t) +u(t)fA(t), wheref® = f o . The product and quotient rules are given
by
f\2 fig— fg?
f A:fA +f0A:fA0+fA’ <> —
(fg) 9+ f°g 9°+ fg J BT
if go° # 0.

If f:T+— R is continuous at each right-dense pdirg T and its left sided limits
exist as a finite number at all left-dense poirgét] =t) on T, then it is called aight-
dense continuougd-continuous) function. Fa, b € T and a differentiable functiof, the
Cauchy integral of 2 is defined by

Zy
fA(s)As= f(b) — f(a).
a
The exponential functior,(t,to) on T is for each fixedo € T the unique solution of the
initial value problem
XA = p(t)X, X(tO) =1,
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wherep: T — R is regressive X+ p(t)p(t) # 0 for all t € T¥) and rd-continuous. Fol-
lowing properties of exponential functions in time scales are important to prove Gronwall’s
inequality, see [2] and [3], respectively. All the other properties of exponential functions in
time scales can be found in [4].

Theorem 2.1.Letp: T — R be positively regressive, i.&+ p(t)p(t) > 0for all € T¢ and
rd-continuous. Then we have

1. ep(t,tp) > Oforallt T,
R
2. ep(t,s) < esPOAT,

The time scale version of L'Hopital’s Rule can be found in [1] and is useful to classify
nonoscillatory solutions of equation (1.1).

Theorem 2.2. Assumef andg are differentiable functions off with

lim f(t) = lim g(t) =0 for some left-densig T, T=TuUsupTUinfT

t—ty t—ty
Suppose there exists> 0 with

gt) >0, d*t)<0 foralltele(ty), Le(to)={teT:0<to—t<e}.
Then we have

f(t) f(t)

imint o ® < imint fO < imsupt® < imsup
t—ty gA(t) - t—ty g(t) o t—ty g(t) B t—ty gA<t)

The chain rule on time scales by2sche ([16]) plays an important role for integral
characterization of recessive solutions.

Theorem 2.3. Let f : R — R be continuously differentiable and suppagsel’ — R is delta
differentiable. Therf og: T — R is delta differentiable and the formula

Z,

(1@ =g*t) _ f'(gt)+hut)g"(®) dn

holds.

3 Nonoscillatory solutions

The half-linear equation (1.1) has the homogeneity property, i.eisif solution of (1.1),
thenAx is also a solution of (1.1), wherec R. If xis a solution of (1.1), then

xU(t) = at)d(é(t), teT

is called the quasi-derivative &f
A solutionx of (1.1) is said to be&onoscillatoryif there existsT > to, T € T such that
X(t)x°(t) > 0 fort > T. Equation (1.1) is calledonoscillatoryif it has a nonoscillatory



Recessive Solutions for Half-Linear Dynamic Equations 185

solution. Due to the Sturm-theory ([14]), if (1.1) has a nonoscillatory solution, then all its
solutions are nonoscillatory.
The condition (1.2) implies

Z o AT

. m <o, tpeT. (3.1

Denote z. Ac
Alt) = t W(T))' (3.2)

We start with the properties of nonoscillatory solutions of (1.1).

Lemma 3.1. Assume that3.1) holds. Ifx is a nonoscillatory solution of1.1), then
1. x andx¥ are eventually strongly monotone;
2. xis bounded,;

3. if lim x(t) =0, then lim xH(t) = ¢, where—o < c < 0 or 0 < ¢ < o according to
whetherx(t) > 0 or x(t) < Ofor larget € T, respectively.

Proof. Without loss of generality, we assume tiét) > 0 fort > to, to € T.

From (1.1),(x¥)2(t) < 0 for larget € T, thusx¥) is eventually decreasing and is
eventually positive or negative, i.& s eventually strongly monotone.

SincexY is eventually decreasing¥ (t) < x (to) for t > to. This implies that

z t
At
X(t) < X(to) + ©* (x¥ (1o .
(0 <X(0)+ @ 0 o) s

Since (3.1) holdsx is bounded. This completes the proof of the second part.

Finally, sincex is eventually strongly monotone, positive athnm X(t) =0, x is even-

tually decreasing and sé(t) < 0 for larget € T. This implies thaix™(t) < 0 for large
teT. If lim x(t) = 0, then integrating (1.1) yields that!(t) > 0 for larget, which gives
a contradiction. O

From Lemma 3.1 and Theorem 2.2 it follows that if (3.1) holds, then any nonoscillatory
solution of (1.1) is bounded and is one the following types:

Type(a) : tlmz\((i)):c 0<|c| < oo,
Type(b) : szgzm.

The following Gronwall Inequality plays an important role to obtain the uniqueness
result on solutions of Type (a). It is an extension of [13, Lemma 4.1] for the continuous
case and [8, Lemma 2.3] for the discrete case.
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Lemma 3.2. Letz, w be two nonnegative rd-continuous functionsbauch that

Z 00
W(T)Z (T)AT <
T
and Z
W(T)AT < o0
Z T
forTeT. Ifz(t) <  w()Z(1)AT, t > T, thenz(t) =0forallt > T.
t
Z o
Proof. Definev(t) ;==  w(1)Z°(1)At. This implies that{0 <)z(t) < v(t),t > T.
t

From here and the faef (t) = —w(t)Z(t), we obtain

VA () +w(t)Vo(t) > 0.
Z [oe]
Sincew(t) > 0and  w(T)AT < o, g,(t, T) is bounded and positive by Theorem 2.1. By
T
the product rule off,

(aw(t, V()2 = (VP (t) + WtV (t))ew(t, T) > 0.

Sincetlim v(t) = 0 andey(t, T) is boundedgy(t, T)v(t) <Ofort > T and sov(t) = O for
t > T. This implies thatz(t) =0fort > T. O

Now, we can prove the existence of a unique (up to a multiplicity constant) vanishing
solution.

Theorem 3.3. Assumg1.2). For anyc # 0 equation(1.1) has a unique (nonoscillatory)
solutionu of Type (a), i. e.,

lmut)=0, lim ul(t)=c, ceR-{0}. (3.3)
Proof. The existencélVe choosé; > tg, t; € T such that

z Z

© © AT 1
. PP ( - ¢*<a<T>>> <1750

and denoteX as a Banach space of all bounded and continuous functions defined for every
t > t; with the supremum norm. Define the $&tC X by

Q- {ue X %A(t) <u(t) < At).t ztl}.

Obviously, Q is bounded, closed and convex. We now consider the opefai@ — X

defined by z. L z
Ku(t) = t db*(a(s))q)*(l_ . b(T)®(u°(1))AT)As.

Then
ZA(t) < Ku(t) <A(t)
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so thatk(Q) c Q. Obviously,K(Q) is relatively compact irX, andK is continuous irX.
By Schauder fixed point theorem, there existi® Q such thatku = u. Therefore, (3.3)
holds.

The uniguenessWithout loss of generality, assunxeandz are two positive solutions
of (1.1)fort > T, T € T such that

lim x(t) :sz(t) =0,

t—o0

lim x (t) = lim 24t =c<o.

t—o0

Sincexl andZ¥ are eventually decreasing, we can assume that

0< —g <xl<—c o0< —g <-M<—c (3.4)
We have Zo 4
o (—x(1))AT = x(t 3.5
L aam > O =x (35)
and Z. 1
(A1l —
t d)*(a(T))cD (—2(1))At = 2(t) (3.6)
from the quasi-derivative of andz, respectively. From (3.4), we have
fdh*(g)A(t) < X(t) < —D*(C)A(t) 3.7)
and c
—qa*(é)A(t) < z(t) < —P*(c)A(L). (3.8)

Since®(r) = rP~1for r > 0, by the mean value theorem we obtain

[P(X(t)) — P(z(t))] < (P—1)(W(t)P2[x(t) — ()],

wherew(t) = max{x(t),z(t)} if p> 2, w(t) =min{x(t),z(t)} if 1 < p< 2, andw(t) = 1if
p = 2. Then for anyp > 1, there exists a positive constdnsuch that

(P—1)(w(t))P 2 < L(A(t))P2
by (3.7) and (3.8). By (3.5) and (3.6), we have
|D(X(t)) — P(t))] < LIA®)P2Ix(t) —2(1)]

and so
Z o 1
[D(X(1)) — D(2(1))] < L(AL))P2

¢ o (an) o (—xY) (1) — d*(—ZY)(1)|aT. (3.9)

Similarly, since
lim &* (X (t) = lim * (2% (t) = d*(c) < 0,

t—oo
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there exists a positive constdtitsuch that
| (XM (1) — & (2 (1)) < HXU(t) — 28 (). (3.10)
Integrating (1.1) from to o, we have
XUty =c+  b(T)®(X(t))AT

and z
1 (t)y=c+ b(T)®(Z(t))AT.

From (3.9) and (3.10), we have

Z [ee]
" (XU (t)) — &2 (1))] <H | DM@ (M) — e(Z(1)]AT
Y4 z
® O p=2 1 R [\ PSP [
SHL bR M) 2 o |01 (X (e) - @' (-2 () laste
Putu(t) = sup|®* (xt(t)) — @*(Z(t))]. Then
t>T
Z. 2z - 1
o p—
uit) < HLZt b(t)(A°(1)) ot c%)*(a(s))u(s)AsAr
® a p—2,,0 ® 1
< HLZt b(T)(A°(1))P=u°(7) ot d)*(a(s))ASAT

= HL  b(1)®(A°(1))u°(1)AT.
t
By (1.2), and Lemma 3.2)(t) = Ofort > T. This implies thax¥(t) = Z¥(t) forallt > T,
and this completes the proof. O

Corollary 3.4. Assumdl.2)andu is a solution of Type (a). Then any solutiomof (1.1)
linearly independent di is of Type (b).

Proof. We will prove that ifu andw are two solutions of Type (a), thanw are linearly
dependent, i.e., there exists& R — {0} such thau = Aw.
Let
tIim u(t) = tIim w(t) =0,
lim utt)=c and lim witl(t) =d,
wherec,d € R — {0}, and letz be the solution of (1.1) such that
c
=" (=)w.
z (d JW.

Thentlim z(t) = 0 and because
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we have c

imZYt) = = limw¥ ) =

tImoz (t) g tIEDOW (t)=c.
By Theorem 3.3z = u. Consequently, any solutionlinearly independent af must be of
Type (b). O

If T =N, then Theorem 3.3 gives [8, Theorem 3.4] and’'i& R, then it gives [9,
Theorem A and Theorem B].

4 Recessive Solutions

Our main result is the following characterization of solutions of Type (a). The continuous
case of the part of the following theorem can be found in [9, Theorem 1].

Theorem 4.1. Assumg1.2). The following statements are equivalent:
(a) Solutionu is of Type (a).
(b) Solutionu satisfies the limit property, i.e.,

lim utt) =0 4.1)
for any solutiorx linearly independent ai.
(c) Solutionu satisfies the Riccati property, i.e.,
ui(t) _ x4
—=  forl T 4.2
o) < X or larget € 4.2)

for any solutionx linearly independent ai.

Proof. Without loss of generality, assunoeandx are eventually positive solutions.
“(@=(b)": If xis a solution of (1.1) such that# Au, A € R — {0}, then by Corollary
3.4xis of Type (b). Consequently, (4.1) holds.
“(b)=-(c)": From (4.1) we have that the functio;%lis eventually positive and eventu-

ally decreasing. Thus

A —
(U)A(t) u(t)x(tt) XA(t)u(t)

X

< Ofor larget € T,

from where (4.2) follows.
“(c)=(a)™: Let there exist a solution satisfying (4.2) for any linearly independent
of u. Assume that is of Type (b), i.e.

ut) _

lim —= : 4.
YN (4.3)
By Theorem 3.3, there exists a unique solutisuch thattlim ;((E[)) = 1. Obviously,zis
linearly independent af and we have
() < m forlarget € T.

u(t) Z(t)



190 E. Akin-Bohner and Z. Bxa

This implies that

<0 forlarget € T

A A N
<u> 0 u(t)z(tt) 2 (t)u(t)

u. . "
and scrz is eventually decreasing and eventually positive. Therefore,

. u(t
lim —) =c, 0<c<om,
t~>ooz(t)

which gives a contradiction with (4.3). O

By Theorems 3.3 and 4.1, equation (1.1) possesses a unique (up to a nonzero multi-
plicative factor) solutioru with the property (4.2). In accordance with the discrete case,
such a solution is called recessive solutionf (1.1) and every solution of (1.1), which is
not a recessive solution is calledlaminant solutiorof (1.1).

Remarkd.2 The property (4.2) is closely related with the minimal solution of the general-
ized Riccati dynamic equation ([14])

RW] := WA+ b(t) + Sw,al(t) =0, (4.4)
where
% lw(t)|® at right-dense
Sw.alt) =94 wy (1 — a) ) at right-scatteretl
H(H) ®(@*(a(t))+u(t) P* (w(t)))

Indeed, ifx is a solution of (1.1) witHaxX)(t) > Ofort > to, to € T, then

xH(t)
D(x(t))

is a solution of (4.4) satisfying
<cb*(a) + po* (w)) (t) >0 fort>to,
see [14]. Thus, the property (4.2), or equivalently

T (t) T(t)
u X
< forlarget € T,

(u(t))  B(x(1))
means that the solutiow, of (4.4) corresponding to the recessive solutionf (1.1) is
smaller than any other solution of (4.4) for laftge

It is an open problem whether the minimal solution of (4.4) and recessive solution of

(1.1) exist without assuminig(t) > 0 and (1.2).




Recessive Solutions for Half-Linear Dynamic Equations 191

5 Integral characterization of recessive solutions

The integral and summation characterization of recessive solutions for differential and dif-
ference equations has been investigated in [6, 10, 11] and [8, 12], respectively. In this
section, we extend some of these results to the dynamic equations.

Lemma 5.1. Supposé€3.1)andAis defined as irf3.2). Then

"R
. Am(T)A(G(T))AT =0, TeT (5.1)
if0O<m<1, and
Lo M@
AT=0, TeT (5.2)

if m> 1.

Proof. By the quotient rule, we have

< 1 )A_ —(AMA(t)
AN ) AM(A™(O(t))”
By Theorem 2.3, we have

Z,

(A0 = (o A)® = mAL) (A1) +huA%D) ™

dh.

Obviously,
0< A’ <A+hpk <A

If 0<m<1,then
Z,

(AMA(t) > mAS(t) . AT H(o(t))dh= mAY ) A (o(t))

and so

1 \* __—mAWY)
AN(t)) — AMtA(o(t)
Integrating above front tot, T € T yields

1 1
A™(t)  AT(T)

IN

Sincetlim A(t) = 0, we obtain (5.1).
Similarly, if m> 1, then
z

(AMA(t) > mAR(t) OlAml(t)dh— mA~ (t) AT L(t),

1\*_ —mA)
<Am(t>) = ADAT(o (1) (5.3)

which implies that
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and integrating above fromtot, T € T yields

11 2 —mAA(1) At
AT ANT) T T A(DAT(a(T))
Sincetli_rQOA(t) =0, we obtain (5.2). O

The following theorem is new for discrete case while the continuous version of it can
be found in [11, Proposition 7].

Theorem 5.2. Assumg1.2) holds. Ifu is a recessive solution ¢fL.1), then there exists
T eT, T >tgsuch that

Z
L ° AT .
= ®*(a(t)) (umue(n))" foranym=1. (5.4)
Z
o At C
J:= P EO)POET) foranyme (0,1], (5.5)
and 7z "
S:= ¢Ar = 00, (5.6)

T ull(T)u(t)uo(1)

Proof. Let u be a recessive solution. By Theorem 4ulis of Type (a). Without loss of
generality, we assumeis eventually positive satisfying

limu(t)=0, lim utt)y=c<o.
By Theorem 2.2, there existse T, T > tp such that
u(t) < —2cA(t) fort > T.

So sinceA is decreasing, and (5.3) holds, we have

Zt AT 1 2t _pdmAr
r o@D UOWD)T AN 1 AN(TAT(G(T)
. 1 2 —A(T)At

AMC2MA™-1(T) 1 A(T)A™(0(T))’

Passing — c and applying Lemma 5.1 we get (5.4). By the same argument we get (5.5).
Similarly, integralsSand
00 —UA(T)
T u(mue(t)
have the same character, i.e., they are either both convergent or both divergent. Since

ZTM <A(1T)>AAT -

we have

and so (5.6) holds. O
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It is an open problem whethér= o, J = w0 or S= o implies thatu is a recessive
solution. A partial answer gives the following theorem.

Corollary 5.3. Assumg3.1)and
z

t b(T)AT < co. (5.7)
0
Then the following statements are equivalent:

(a) uis a recessive solution dfL.1).

(b) (5.4)holds.

(c) (5.5)holds.

(d) (5.6) holds.

Proof. First we prove that any solution is bounded together with its quasiderivative. By
Lemma 3.1 (ii), any solutiox of (1.1) is bounded. Integrating (1.1) froimo « and us-
ing (5.7) the boundedness ®f follows. Hence, a solution is of Type (b) if and only if
Jmu(t) =¢, 0<c| < co.

Now by Theorem 5.2, it is enough to prove that if (5.4), (5.5) or (5.6) holds, uhem
recessive solution of (1.1).

Assumel = co or J = co. Then, in view of (3.1), we gelim u(t) = 0. Sinceul¥ is
boundedu is of Type (a) and by Theorem 4.1 solutioris recessive.

AssumeS= . If uis dominant, thertil;rrgc u(t) =c, 0 < |c| < 0. Becausel¥ is bounded

and Z

U (T)AT < o,
.

we haveS < «, a contradiction. O

Lemma 5.4. Assumg1.2)and
z

b(t1)At=00, tge T (5.8)

to
Then any solutiow of (1.1)satisfiesx(t)x¥(t) < Ofort € T.

Proof. By Theorem 3.3, equation (1.1) is nonoscillatory. Without loss of generality, we
assume thak(t) > 0 fort > to, to € T. Thenx¥(t) is decreasing fot > to. Assume that
x(t) > 0fort >ty >to, ty € T. This implies thaix(t) is increasing > t;. Integrating
equation (1.1) front; tot yields

Z

x(t) < XY (ty) — D(x(to))  b(s)As,
1

where we also use the monotonicity>fBut this contradicts with the positivity of! as
t — oo. O

Moreover, the following result holds for the special choic&lc N.

Theorem 5.5.[12, Theorem 1] Lefl = N, p € (1,2] and letu(t)u(t) < O for larget. If
(5.6) holds, theru is a recessive solution dfL.1).
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By Theorem 5.2, Lemma 5.4, and Theorem 5.5 we improve the previous result.

Corollary 5.6. LetT =N, p€ (1,2], (1.2)and(5.8) hold. Theru is a recessive solution if
and only if (5.6) holds.

Concluding remarks.

(1) Does exist the minimal solution of the Riccati dynamical equation (4.4) without
assuming (1.2)?

(2) Theorem 3.3 can be extended bowhich can change sign replacing (1.2) by

z Z

00

As
Ib(T)|® ( ” q)*(a(s))) AT < oo, (5.9)

(o)
to

The proof is a similar as that one in [7] where the continuous case is treated.
(3) Does it hold Corollary 5.6 for any time scales?
(4) Letp > 2, (5.9) holds and

z zZ,

© 1
o ( —— b(s)|As | AT = oo, toe T.
o <a<s> o PO ) 0

We conjecture that in this case the integral characterization (5.6) can fail.
Acknowledgement. Second author is supported by the Research Project 0021622409 of
the Ministery of Education of the Czech Republic and Grant 201/07/0145 of the Czech
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