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1 Introduction

In this paper, we consider the half-linear dynamic equation

[a(t)Φ(x∆(t))]∆ +b(t)Φ(xσ(t)) = 0, t ≥ t0, t0 ∈ T (1.1)

whereT is a time scale, a closed subset of real numbers. We assume thatsupT = ∞,

Φ(u) = |u|p−2u, p > 1, and
1
a
,b are positive right-dense continuous functions onT.

Throughout this paper, by a solution of (1.1) we mean a nontrivial solution of (1.1).
The recessive solution for the linear dynamic equation

[a(t)x∆(t)]∆ +b(t)xσ(t) = 0

has been characterized by the similar way as in the continuous case (i.e.T = R) and the
discrete case (i.e.T= N) , see [4, Theorem 4.61].

The extension of the notion of a recessive solution to the half-linear differential equation
and difference equation is in general difficult problem and only partial results have been
obtained, see e.g. [6, 7, 9, 10, 11] and [8, 12], respectively. We refer [15] for the discussion
why 1

a has to be a right-dense continuous function onT.
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In this paper we study recessive solutions for (1.1) under the assumption
Z ∞

t0
b(τ)Φ

(Z ∞

σ(τ)

∆s
Φ∗(a(s))

)
∆τ < ∞, t0 ∈ T, (1.2)

whereΦ∗ is the inverse function ofΦ.
In the next section, we give a brief introduction to a time scale. In the third section, we

obtain some essential results on solutions of half-linear dynamic equations and the Gronwall
inequality on time scales. In the last two sections, we consider recessive solutions of half-
linear dynamic equations.

2 Time Scale Calculus

In this section, we only mention preliminary results on time scales. More details of dynamic
equations with applications can be found in [4, 5].

The forward jump operatorσ(t) := inf{s > t : s∈ T} ∈ T, for all t ∈ T gives us the
next point inT while thebackward jump operatorρ(t) := sup{s< t : s∈ T} ∈ T for all
t ∈T gives us the previous point inT. Thegraininess functionµ :T 7→ [0,∞) is the distance
between two consecutive points inT, i.e.,µ(t) := σ(t)− t.

We defineTκ = T−{m} if m is a left-scattered maximum, otherwiseTκ = T. We
assumef ,g : T 7→ R and lett ∈ Tκ. Delta derivativef ∆(t) of f (t) at t is defined to be the
number (provided it exists) if for given anyε > 0, there is a neighborhoodU of t such that

∣∣[ f (σ(t))− f (s)]− f ∆(t)[σ(t)−s]
∣∣≤ ε |σ(t)−s|

for all s∈U . The delta derivativef ∆ is the usual derivative ifT= R and the usual forward
difference operator ifT= Z.

For right-scattered points (σ(t) > t) inT, we havef ∆(t) =
f (σ(t))− f (t)

µ(t)
while f ∆(t) =

lim
s→t

f (t)− f (s)
t−s

for right-dense points (σ(t) = t) in T if the limit exists. For anyt ∈ T, we

have f σ(t) = f (t)+µ(t) f ∆(t), where f σ = f ◦σ. The product and quotient rules are given
by

( f g)∆ = f ∆g+ f σg∆ = f ∆gσ + f g∆,

(
f
g

)∆
=

f ∆g− f g∆

ggσ

if ggσ 6= 0.
If f : T 7→ R is continuous at each right-dense pointt ∈ T and its left sided limits

exist as a finite number at all left-dense points (ρ(t) = t) on T, then it is called aright-
dense continuous(rd-continuous) function. Fora,b∈ T and a differentiable functionf , the
Cauchy integral off ∆ is defined by

Z b

a
f ∆(s)∆s= f (b)− f (a).

The exponential functionep(t, t0) on T is for each fixedt0 ∈ T the unique solution of the
initial value problem

x∆ = p(t)x, x(t0) = 1,
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where p : T 7→ R is regressive (1+ µ(t)p(t) 6= 0 for all t ∈ Tκ) and rd-continuous. Fol-
lowing properties of exponential functions in time scales are important to prove Gronwall’s
inequality, see [2] and [3], respectively. All the other properties of exponential functions in
time scales can be found in [4].

Theorem 2.1. Let p : T 7→R be positively regressive, i.e.,1+µ(t)p(t) > 0 for all ∈ Tκ and
rd-continuous. Then we have

1. ep(t, t0) > 0 for all t ∈ T,

2. ep(t,s)≤ e
R t

s p(τ)∆τ.

The time scale version of L’Hopital’s Rule can be found in [1] and is useful to classify
nonoscillatory solutions of equation (1.1).

Theorem 2.2. Assumef andg are differentiable functions onT with

lim
t→t−0

f (t) = lim
t→t−0

g(t) = 0 for some left-denset0 ∈ T̄, T̄ = T∪supT∪ infT

Suppose there existsε > 0 with

g(t) > 0, g∆(t) < 0 for all t ∈ Lε(t0), Lε(t0) = {t ∈ T : 0 < t0− t < ε}.

Then we have

liminf
t→t−0

f ∆(t)
g∆(t)

≤ liminf
t→t−0

f (t)
g(t)

≤ limsup
t→t−0

f (t)
g(t)

≤ limsup
t→t−0

f ∆(t)
g∆(t)

.

The chain rule on time scales by Pötzsche ([16]) plays an important role for integral
characterization of recessive solutions.

Theorem 2.3. Let f :R 7→R be continuously differentiable and supposeg : T 7→R is delta
differentiable. Thenf ◦g : T 7→ R is delta differentiable and the formula

( f ◦g)∆(t) = g∆(t)
Z 1

0
f ′

(
g(t)+hµ(t)g∆(t)

)
dh

holds.

3 Nonoscillatory solutions

The half-linear equation (1.1) has the homogeneity property, i.e., ifx is a solution of (1.1),
thenλx is also a solution of (1.1), whereλ ∈ R. If x is a solution of (1.1), then

x[1](t) = a(t)Φ(x∆(t)), t ∈ T

is called the quasi-derivative ofx.
A solutionx of (1.1) is said to benonoscillatoryif there existsT ≥ t0, T ∈ T such that

x(t)xσ(t) > 0 for t ≥ T. Equation (1.1) is callednonoscillatoryif it has a nonoscillatory
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solution. Due to the Sturm-theory ([14]), if (1.1) has a nonoscillatory solution, then all its
solutions are nonoscillatory.

The condition (1.2) implies

Z ∞

t0

∆τ
Φ∗(a(τ))

< ∞, t0 ∈ T. (3.1)

Denote

A(t) =
Z ∞

t

∆τ
Φ∗(a(τ))

. (3.2)

We start with the properties of nonoscillatory solutions of (1.1).

Lemma 3.1. Assume that(3.1)holds. Ifx is a nonoscillatory solution of(1.1), then

1. x andx[1] are eventually strongly monotone;

2. x is bounded;

3. if lim
t→∞

x(t) = 0, then lim
t→∞

x[1](t) = c, where−∞ ≤ c < 0 or 0 < c≤ ∞ according to

whetherx(t) > 0 or x(t) < 0 for larget ∈ T, respectively.

Proof. Without loss of generality, we assume thatx(t) > 0 for t ≥ t0, t0 ∈ T.
From (1.1),(x[1])∆(t) < 0 for larget ∈ T, thusx[1] is eventually decreasing andx∆ is

eventually positive or negative, i.e.,x is eventually strongly monotone.
Sincex[1] is eventually decreasing,x[1](t)≤ x[1](t0) for t ≥ t0. This implies that

x(t)≤ x(t0)+Φ∗(x[1](t0))
Z t

t0

∆τ
Φ∗(a(τ))

.

Since (3.1) holds,x is bounded. This completes the proof of the second part.
Finally, sincex is eventually strongly monotone, positive andlim

t→∞
x(t) = 0, x is even-

tually decreasing and sox∆(t) < 0 for larget ∈ T. This implies thatx[1](t) < 0 for large
t ∈ T. If lim

t→∞
x[1](t) = 0, then integrating (1.1) yields thatx[1](t) > 0 for larget, which gives

a contradiction.

From Lemma 3.1 and Theorem 2.2 it follows that if (3.1) holds, then any nonoscillatory
solution of (1.1) is bounded and is one the following types:

Type(a) : lim
t→∞

x(t)
A(t)

= c 0 < |c|< ∞,

Type(b) : lim
t→∞

x(t)
A(t)

= ∞.

The following Gronwall Inequality plays an important role to obtain the uniqueness
result on solutions of Type (a). It is an extension of [13, Lemma 4.1] for the continuous
case and [8, Lemma 2.3] for the discrete case.
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Lemma 3.2. Let z,w be two nonnegative rd-continuous functions onT such that
Z ∞

T
w(τ)zσ(τ)∆τ < ∞

and Z ∞

T
w(τ)∆τ < ∞

for T ∈ T. If z(t)≤
Z ∞

t
w(τ)zσ(τ)∆τ, t ≥ T, thenz(t) = 0 for all t ≥ T.

Proof. Definev(t) :=
Z ∞

t
w(τ)zσ(τ)∆τ. This implies that(0≤)z(t)≤ v(t), t ≥ T.

From here and the factv∆(t) =−w(t)zσ(t), we obtain

v∆(t)+w(t)vσ(t)≥ 0.

Sincew(t)≥ 0 and
Z ∞

T
w(τ)∆τ < ∞, ew(t,T) is bounded and positive by Theorem 2.1. By

the product rule onT,

(ew(t,T)v(t))∆ = (v∆(t)+w(t)vσ(t))ew(t,T)≥ 0.

Sincelim
t→∞

v(t) = 0 andew(t,T) is bounded,ew(t,T)v(t) ≤ 0 for t ≥ T and sov(t) = 0 for

t ≥ T. This implies thatz(t) = 0 for t ≥ T.

Now, we can prove the existence of a unique (up to a multiplicity constant) vanishing
solution.

Theorem 3.3. Assume(1.2). For anyc 6= 0 equation(1.1) has a unique (nonoscillatory)
solutionu of Type (a), i. e.,

lim
t→∞

u(t) = 0, lim
t→∞

u[1](t) = c, c∈ R−{0}. (3.3)

Proof. The existence.We chooset1 ≥ t0, t1 ∈ T such that
Z ∞

t1
b(t)Φ

(Z ∞

σ(t)

∆τ
Φ∗(a(τ))

)
∆t < 1− 1

Φ(2)

and denoteX as a Banach space of all bounded and continuous functions defined for every
t ≥ t1 with the supremum norm. Define the setΩ⊂ X by

Ω =
{

u∈ X :
1
2

A(t)≤ u(t)≤ A(t), t ≥ t1

}
.

Obviously,Ω is bounded, closed and convex. We now consider the operatorK : Ω 7→ X
defined by

Ku(t) =
Z ∞

t

1
Φ∗(a(s))

Φ∗(1−
Z ∞

s
b(τ)Φ(uσ(τ))∆τ)∆s.

Then
1
2

A(t)≤ Ku(t)≤ A(t)
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so thatK(Ω) ⊂ Ω. Obviously,K(Ω) is relatively compact inX, andK is continuous inX.
By Schauder fixed point theorem, there existsu in Ω such thatKu = u. Therefore, (3.3)
holds.

The uniqueness.Without loss of generality, assumex andz are two positive solutions
of (1.1) fort ≥ T, T ∈ T such that

lim
t→∞

x(t) = lim
t→∞

z(t) = 0,

lim
t→∞

x[1](t) = lim
t→∞

z[1](t) = c < 0.

Sincex[1] andz[1] are eventually decreasing, we can assume that

0 <−c
2

<−x[1] <−c, 0 <−c
2

<−z[1] <−c. (3.4)

We have Z ∞

t

1
Φ∗(a(τ))

Φ∗(−x[1](τ))∆τ = x(t) (3.5)

and Z ∞

t

1
Φ∗(a(τ))

Φ∗(−z[1](τ))∆τ = z(t) (3.6)

from the quasi-derivative ofx andz, respectively. From (3.4), we have

−Φ∗(
c
2
)A(t) < x(t) <−Φ∗(c)A(t) (3.7)

and
−Φ∗(

c
2
)A(t) < z(t) <−Φ∗(c)A(t). (3.8)

SinceΦ(r) = r p−1 for r > 0, by the mean value theorem we obtain

|Φ(x(t))−Φ(z(t))| ≤ (p−1)(w(t))p−2|x(t)−z(t)|,

wherew(t) = max{x(t),z(t)} if p > 2, w(t) = min{x(t),z(t)} if 1 < p < 2, andw(t) = 1 if
p = 2. Then for anyp > 1, there exists a positive constantL such that

(p−1)(w(t))p−2 ≤ L(A(t))p−2

by (3.7) and (3.8). By (3.5) and (3.6), we have

|Φ(x(t))−Φ(z(t))| ≤ L(A(t))p−2|x(t)−z(t)|

and so

|Φ(x(t))−Φ(z(t))| ≤ L(A(t))p−2
Z ∞

t

1
Φ∗(a(τ))

|Φ∗(−x[1])(τ)−Φ∗(−z[1])(τ)|∆τ. (3.9)

Similarly, since
lim
t→∞

Φ∗(x[1])(t) = lim
t→∞

Φ∗(z[1])(t) = Φ∗(c) < 0,
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there exists a positive constantH such that

|Φ∗(x[1](t))−Φ∗(z[1](t))| ≤ H|x[1](t)−z[1](t)|. (3.10)

Integrating (1.1) fromt to ∞, we have

x[1](t) = c+
Z ∞

t
b(τ)Φ(xσ(t))∆τ

and
z[1](t) = c+

Z ∞

t
b(τ)Φ(zσ(t))∆τ.

From (3.9) and (3.10), we have

|Φ∗(x[1](t))−Φ∗(z[1](t))| ≤ H
Z ∞

t
b(τ)|Φ(xσ(τ))−Φ(zσ(τ))|∆τ

≤ HL
Z ∞

t
b(τ))(Aσ(τ))p−2

Z ∞

σ(τ)

1
Φ∗(a(s))

|Φ∗(−x[1](s))−Φ∗(−z[1](s))|∆s∆τ.

Putu(t) = sup
t≥T

|Φ∗(x[1](t))−Φ∗(z[1](t))|. Then

u(t) ≤ HL
Z ∞

t
b(τ)(Aσ(τ))p−2

Z ∞

σ(τ)

1
Φ∗(a(s))

u(s)∆s∆τ

≤ HL
Z ∞

t
b(τ)(Aσ(τ))p−2uσ(τ)

Z ∞

σ(τ)

1
Φ∗(a(s))

∆s∆τ

= HL
Z ∞

t
b(τ)Φ(Aσ(τ))uσ(τ)∆τ.

By (1.2), and Lemma 3.2,u(t) = 0 for t ≥ T. This implies thatx[1](t) = z[1](t) for all t ≥ T,
and this completes the proof.

Corollary 3.4. Assume(1.2) andu is a solution of Type (a). Then any solutionx of (1.1)
linearly independent ofu is of Type (b).

Proof. We will prove that ifu andw are two solutions of Type (a), thenu,w are linearly
dependent, i.e., there existsλ ∈ R−{0} such thatu = λw.

Let
lim
t→∞

u(t) = lim
t→∞

w(t) = 0,

lim
t→∞

u[1](t) = c and lim
t→∞

w[1](t) = d,

wherec,d ∈ R−{0}, and letzbe the solution of (1.1) such that

z= Φ∗(
c
d
)w.

Thenlim
t→∞

z(t) = 0 and because

z[1] =
c
d

w[1],
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we have
lim
t→∞

z[1](t) =
c
d

lim
t→∞

w[1](t) = c.

By Theorem 3.3,z= u. Consequently, any solutionx linearly independent ofu must be of
Type (b).

If T = N, then Theorem 3.3 gives [8, Theorem 3.4] and ifT = R, then it gives [9,
Theorem A and Theorem B].

4 Recessive Solutions

Our main result is the following characterization of solutions of Type (a). The continuous
case of the part of the following theorem can be found in [9, Theorem 1].

Theorem 4.1. Assume(1.2). The following statements are equivalent:
(a) Solutionu is of Type (a).
(b) Solutionu satisfies the limit property, i.e.,

lim
t→∞

u(t)
x(t)

= 0 (4.1)

for any solutionx linearly independent ofu.
(c) Solutionu satisfies the Riccati property, i.e.,

u∆(t)
u(t)

<
x∆(t)
x(t)

for larget ∈ T (4.2)

for any solutionx linearly independent ofu.

Proof. Without loss of generality, assumeu andx are eventually positive solutions.
“(a)=⇒(b)”: If x is a solution of (1.1) such thatx 6= λu, λ ∈ R−{0}, then by Corollary

3.4x is of Type (b). Consequently, (4.1) holds.

“(b)=⇒(c)”: From (4.1) we have that the function
u
x

is eventually positive and eventu-

ally decreasing. Thus

(u
x

)∆
(t) =

u∆(t)x(t)−x∆(t)u(t)
x(t)xσ(t)

< 0 for larget ∈ T,

from where (4.2) follows.
“(c)=⇒(a)”: Let there exist a solutionu satisfying (4.2) for anyx linearly independent

of u. Assume thatu is of Type (b), i.e.

lim
t→∞

u(t)
A(t)

= ∞. (4.3)

By Theorem 3.3, there exists a unique solutionz such thatlim
t→∞

z(t)
A(t)

= 1. Obviously,z is

linearly independent ofu and we have

u∆(t)
u(t)

<
z∆(t)
z(t)

for larget ∈ T.
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This implies that

(
u
z

)∆
(t) =

u∆(t)z(t)−z∆(t)u(t)
z(t)zσ(t)

< 0 for larget ∈ T

and so
u
z

is eventually decreasing and eventually positive. Therefore,

lim
t→∞

u(t)
z(t)

= c, 0≤ c < ∞,

which gives a contradiction with (4.3).

By Theorems 3.3 and 4.1, equation (1.1) possesses a unique (up to a nonzero multi-
plicative factor) solutionu with the property (4.2). In accordance with the discrete case,
such a solution is called arecessive solutionof (1.1) and every solution of (1.1), which is
not a recessive solution is called adominant solutionof (1.1).

Remark4.2. The property (4.2) is closely related with the minimal solution of the general-
ized Riccati dynamic equation ([14])

R[w] := w∆ +b(t)+S[w,a](t) = 0, (4.4)

where

S[w,a](t) =





p−1
Φ∗(a(t)) |w(t)|β at right-denset

w(t)
µ(t)

(
1− a(t)

Φ(Φ∗(a(t))+µ(t)Φ∗(w(t)))

)
at right-scatteredt.

Indeed, ifx is a solution of (1.1) with(axxσ)(t) > 0 for t ≥ t0, t0 ∈ T, then

w(t) =
x[1](t)

Φ(x(t))

is a solution of (4.4) satisfying

(
Φ∗(a)+µΦ∗(w)

)
(t) > 0 for t ≥ t0,

see [14]. Thus, the property (4.2), or equivalently

u[1](t)
Φ(u(t))

<
x[1](t)

Φ(x(t))
for larget ∈ T,

means that the solutionwu of (4.4) corresponding to the recessive solutionu of (1.1) is
smaller than any other solution of (4.4) for larget.

It is an open problem whether the minimal solution of (4.4) and recessive solution of
(1.1) exist without assumingb(t) > 0 and (1.2).



Recessive Solutions for Half-Linear Dynamic Equations 191

5 Integral characterization of recessive solutions

The integral and summation characterization of recessive solutions for differential and dif-
ference equations has been investigated in [6, 10, 11] and [8, 12], respectively. In this
section, we extend some of these results to the dynamic equations.

Lemma 5.1. Suppose(3.1)andA is defined as in(3.2). Then

Z ∞

T

−A∆(τ)
Am(τ)A(σ(τ))

∆τ = ∞, T ∈ T (5.1)

if 0 < m≤ 1, and Z ∞

T

−A∆(τ)
A(τ)Am(σ(τ))

∆τ = ∞, T ∈ T (5.2)

if m≥ 1.

Proof. By the quotient rule, we have

(
1

Am(t)

)∆
=

−(Am)∆(t)
Am(t)Am(σ(t))

.

By Theorem 2.3, we have

(Am)∆(t) = (tm◦A)∆ = mA∆(t)
Z 1

0

(
A(t)+hµ(t)A∆(t)

)m−1
dh.

Obviously,
0 < Aσ ≤ A+hµA∆ ≤ A.

If 0 < m≤ 1, then

(Am)∆(t)≥mA∆(t)
Z 1

0
Am−1(σ(t))dh= mA∆(t)Am−1(σ(t))

and so (
1

Am(t)

)∆
≤ −mA∆(t)

Am(t)A(σ(t))
.

Integrating above fromT to t, T ∈ T yields

1
Am(t)

− 1
Am(T)

≤
Z t

T

−mA∆(τ)
Am(τ)A(σ(τ))

∆τ.

Sincelim
t→∞

A(t) = 0, we obtain (5.1).

Similarly, if m≥ 1, then

(Am)∆(t)≥mA∆(t)
Z 1

0
Am−1(t)dh= mA∆(t)Am−1(t),

which implies that (
1

Am(t)

)∆
≤ −mA∆(t)

A(t)Am(σ(t))
(5.3)
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and integrating above fromT to t, T ∈ T yields

1
Am(t)

− 1
Am(T)

≤
Z t

T

−mA∆(τ)
A(τ)Am(σ(τ))

∆τ.

Sincelim
t→∞

A(t) = 0, we obtain (5.2).

The following theorem is new for discrete case while the continuous version of it can
be found in [11, Proposition 7].

Theorem 5.2. Assume(1.2) holds. If u is a recessive solution of(1.1), then there exists
T ∈ T, T ≥ t0 such that

I :=
Z ∞

T

∆τ
Φ∗(a(τ))

(
u(τ)uσ(τ)

)m = ∞ for anym≥ 1, (5.4)

J :=
Z ∞

T

∆τ
Φ∗(a(τ))um(τ)uσ(τ)

= ∞ for anym∈ (0,1], (5.5)

and

S:=
Z ∞

T

u∆(τ)
u[1](τ)u(τ)uσ(τ)

∆τ = ∞. (5.6)

Proof. Let u be a recessive solution. By Theorem 4.1,u is of Type (a). Without loss of
generality, we assumeu is eventually positive satisfying

lim
t→∞

u(t) = 0, lim
t→∞

u[1](t) = c < 0.

By Theorem 2.2, there existsT ∈ T, T ≥ t0 such that

u(t) <−2cA(t) for t ≥ T.

So sinceA is decreasing, and (5.3) holds, we have
Z t

T

∆τ
Φ∗(a(τ))(u(τ)uσ(τ))m >

1
4mc2m

Z t

T

−A∆(τ)∆τ
Am(τ)Am(σ(τ))

>
1

4mc2mAm−1(T)

Z t

T

−A∆(τ)∆τ
A(τ)Am(σ(τ))

.

Passingt → ∞ and applying Lemma 5.1 we get (5.4). By the same argument we get (5.5).
Similarly, integralsSand Z ∞

T

−u∆(τ)
u(τ)uσ(τ)

∆τ

have the same character, i.e., they are either both convergent or both divergent. Since

Z ∞

T

(
1

A(τ)

)∆
∆τ = ∞,

we have Z ∞

T

−u∆(τ)
u(τ)uσ(τ)

∆τ =
Z ∞

T

(
1

u(τ)

)∆
∆τ = ∞,

and so (5.6) holds.
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It is an open problem whetherI = ∞, J = ∞ or S= ∞ implies thatu is a recessive
solution. A partial answer gives the following theorem.

Corollary 5.3. Assume(3.1)and
Z ∞

t0
b(τ)∆τ < ∞. (5.7)

Then the following statements are equivalent:
(a) u is a recessive solution of(1.1).
(b) (5.4)holds.
(c) (5.5)holds.
(d) (5.6)holds.

Proof. First we prove that any solution is bounded together with its quasiderivative. By
Lemma 3.1 (ii), any solutionx of (1.1) is bounded. Integrating (1.1) fromt to ∞ and us-
ing (5.7) the boundedness ofx[1] follows. Hence, a solution is of Type (b) if and only if
lim
t→∞

u(t) = c, 0 < |c|< ∞.

Now by Theorem 5.2, it is enough to prove that if (5.4), (5.5) or (5.6) holds, thenu is a
recessive solution of (1.1).

AssumeI = ∞ or J = ∞. Then, in view of (3.1), we getlim
t→∞

u(t) = 0. Sinceu[1] is

bounded,u is of Type (a) and by Theorem 4.1 solutionu is recessive.
AssumeS= ∞. If u is dominant, thenlim

t→∞
u(t) = c, 0< |c|< ∞. Becauseu[1] is bounded

and Z ∞

T
u∆(τ)∆τ < ∞,

we haveS< ∞, a contradiction.

Lemma 5.4. Assume(1.2)and
Z ∞

t0
b(τ)∆τ = ∞, t0 ∈ T (5.8)

Then any solutionx of (1.1)satisfiesx(t)x[1](t) < 0 for t ∈ T.

Proof. By Theorem 3.3, equation (1.1) is nonoscillatory. Without loss of generality, we
assume thatx(t) > 0 for t ≥ t0, t0 ∈ T. Thenx[1](t) is decreasing fort ≥ t0. Assume that
x[1](t) > 0 for t ≥ t1 ≥ t0, t1 ∈ T. This implies thatx(t) is increasingt ≥ t1. Integrating
equation (1.1) fromt1 to t yields

x[1](t)≤ x[1](t1)−Φ(x(t0))
Z t

t1
b(s)∆s,

where we also use the monotonicity ofx. But this contradicts with the positivity ofx[1] as
t → ∞.

Moreover, the following result holds for the special choice ofT= N.

Theorem 5.5. [12, Theorem 1] LetT = N, p∈ (1,2] and letu(t)u∆(t) < 0 for large t. If
(5.6)holds, thenu is a recessive solution of(1.1).
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By Theorem 5.2, Lemma 5.4, and Theorem 5.5 we improve the previous result.

Corollary 5.6. LetT= N, p∈ (1,2], (1.2)and (5.8)hold. Thenu is a recessive solution if
and only if (5.6)holds.

Concluding remarks.
(1) Does exist the minimal solution of the Riccati dynamical equation (4.4) without

assuming (1.2)?
(2) Theorem 3.3 can be extended forb which can change sign replacing (1.2) by

Z ∞

t0
|b(τ)|Φ

(Z ∞

σ(τ)

∆s
Φ∗(a(s))

)
∆τ < ∞. (5.9)

The proof is a similar as that one in [7] where the continuous case is treated.
(3) Does it hold Corollary 5.6 for any time scales?
(4) Let p > 2, (5.9) holds and

Z ∞

t0
Φ∗

(
1

a(s)

Z t

t0
|b(s)|∆s

)
∆τ = ∞, t0 ∈ T.

We conjecture that in this case the integral characterization (5.6) can fail.
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