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Abstract
This paper deals with the control of unmanned mobile robots which are modeled by three-
dimensional systems of first order dynamic equations. Our goal is to show the asymptotic
stability of the zero solution of the system. It turns out that the results in the continuous
case can be improved by proposing different controllers. Therefore, we are able to unify the
results and extend them to one comprehensive theory, called time scale theory which can be
accepted beyond the continuous and discrete cases.
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Introduction

In recent years, intelligent controller techniques such as neural network controllers arewidely
used. One of the main drawback of these controllers is the computational complexity. There-
fore, event-triggered controllers [3,6,7,10,11] become popular wherein execution time of
the controllers is based on the real-time operation of the system. The main purpose of the
event-triggered controller is to reduce the computation cost of the controller which can be
highly benefitial for unmanned vehicle control applications since they only have limited
built-in microprocessors to execute the controller. In the event-triggered controller, an event-
triggering condition is designed by taking into account the stability and the closed-loop
performance of the systems. However, the controller has to check if the event condition is
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Fig. 1 Definition of the States for
the Unicycle

satisfied or not continuously which also causes computational cost. Therefore, a novel regu-
lation controller is defined for a nonholonomic mobile robot in a generalized time scale. This
new approach enables the user to calculate the controller at some instants similar to the event
triggered approaches [3,6,7,10,11]. The benefit of the controller defined in a general time
scale over the event triggered controllers is that the event triggering condition is not necessar-
ily be checked which reduces the computation further. Most recently, there are new advances
in control of ground vehicles and mobile robots, see [8,9]. For example, Sun, Zhang and Liu
[9] provides a two-time scale ABS control scheme for ground vehicles without knowing the
priori knowledge of the road condition. Also, Sun, Tang, Gao and Zhao [9] propose a con-
troller for mobile robots to improve the transient performance by using time-scale filtering
technique.

A unicycle is a vehicle with a single orientable wheel, which is also the model of a non-
holonomic Wheeled Mobile Robot (WMR) and corresponds to a single wheel rolling on the
plane. Consider the system

⎧
⎪⎪⎨

⎪⎪⎩

αΔ(t) = −v(t) cosβ(t)

βΔ(t) = sin βσ (t)
ασ (t) v(t) − w(t)

γ Δ(t) = sin βσ (t)
ασ (t) v(t),

(1)

on a time scale T, a nonempty closed subset of real numbers, where α is the distance of the
reference point (x, y) of the unicycle from the goal (origin), β is the angle of the pointing
vector to the goal with respect to the unicycle main axis, γ is the angle of the same pointing
vector with respect to x axis, v and w are the controllers, see Fig. 1 ([5]).

System (1) in the case T = R is considered in [5] by Luca, Oriola and Vendittelli to show
the asymptotic stability of the zero solution. However, the control inputs proposed in [5] do
not allow us to unify the results on general time scales. The proposed controllers given by
[5] enables us to show the asymptotic stability in continuous case by using the Barbalat’s
Lemma. However, since the Barbalat’s lemma does not exist in general time scale theory,
we provide a new controller to show the asymptotic stability without any need of Barbalat’s
lemma. Therefore, the results are unified and extended into one comprehensive theory.
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The structure of this paper is as follows: In Sect. 2, we give the preliminary results of
the time scale calculus and stability theory for the interested readers to understand the basis
of the time scale theory. Section 3 provides the asymptotic stability of the zero solution of
system (1) with different controllers. In Sect. 4, we demonstrate the simulation results in
order to validate our theoretical claims. Finally, we give a conclusion in the last section.

Preliminary Results

In this section, we give the preliminary results on time scales and basic definitions and
theorems on stability and invariance principle.

Time Scales Calculus

The theory of time scales is initiated by Stefan Hilger in his PhD thesis in 1988 in order to
unify discrete and continous analysis and combine them in one comprehensive theory.

Definition 1 [1, Definition 1.1] For t ∈ T, σ : T → T is called the forward jump operator
defined by

σ(t) := inf{s ∈ T : s > t}
while ρ : T → T is called the backward jump operator given by

ρ(t) := sup{s ∈ T : s < t}.
Finally, μ : T → [0,∞) is called the graininess function given by μ(t) := σ(t) − t .

The classification of points on time scales are very significant. For example, t is said to
be left-scattered when ρ(t) < t , while right-scattered when σ(t) > t . We say that t is
isolated when t is left and right scattered at the same time. In addition, we call t right-dense
when t < supT and σ(t) = t , while t is called left-dense when t > inf T and ρ(t) = t .
Finally, we call t dense when t is right and left-dense at the same time. If supT < ∞, then
T

κ = T\(ρ(supT), supT], and T
κ = T if supT = ∞. Also f σ : T → R is defined by

f σ (t) = f (σ (t)) for all t ∈ T, where f : T → R.

Definition 2 [1, Definition 1.10] For any ε, if there exists a δ > 0 such that

| f σ (t) − f (s) − f Δ(t)(σ (t) − s)| ≤ ε|σ(t) − s| for all s ∈ (t − δ, t + δ) ∩ T,

then f is called delta (or Hilger) differentiable on Tκ and f Δ is called delta derivative of f .

Theorem 1 [1, Theorem 1.16] Let f : T → R be a function with t ∈ T
κ . Then

a. If f is differentiable at t , f is continuous at t .
b. If f is continuous at t and t is right-scattered, then f is differentiable at t and

f Δ(t) = f σ (t) − f (t)

μ(t)
.

c. If t is right dense, then f is differentiable at t iff

f Δ(t) = lim
s→t

f (t) − f (s)

t − s

exists as a finite number.
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d. If f is differentiable at t , then

f σ (t) = f (t) + μ(t) f Δ(t). (2)

Note that f Δ = f ′ (usual derivative) when T = R, while f Δ = Δ f (forward difference
operator) if T = Z. The sum, product and quotient rules on time scales are introduced as
follows:

Theorem 2 [1, Theorem 1.20] For t ∈ T
κ , suppose that f , g : T → R are differentiable at

t . Then

a. The sum f + g : T → R is differentiable at t with

( f + g)Δ(t) = f Δ(t) + gΔ(t).

b. If the product f g : T → R is differentiable at t , then

( f g)Δ(t) = f Δ(t)g(t) + f σ (t)gΔ(t) = f (t)gΔ(t) + f Δ(t)gσ (t).

c. If g(t)gσ (t) �= 0, then f
g is differentiable at t with

(
f

g

)Δ

(t) = f Δ(t)g(t) − f (t)gΔ(t)

g(t)gσ (t)
.

Let f : T → R. Then f is said to be rd-continuous, if it is continuous at right dense
points in T and its left sided limits exist as a finite number at left dense points in T. Note also
that every rd-continuous function has an antiderivative. Moreover, F given by

F(t) =
∫ t

t0
f (s)Δs for t ∈ T

is called an antiderivative of f , see [1, Theorem 1.74].

Stability and Lyapunov Function

In this section, the stability concept on time scales are introduced. The notations x = x(t) and
V̇ (t, x) = [V (x(t))]Δ are used throughout. Let V : R3 → [0,∞) be a Lyapunov function
defined as

V (x) = V1(x1) + V2(x2) + V3(x3),

where each Vi : R → R is continuously differentiable. There are several methods for
computing V̇ such as chain and product rules. Even though the system is autonomous and
V = V (x), V̇ depends on t since the graininess function of T is not always constant. For the
sake of the article, we give the following definitions, see [4].

Definition 3 A function φ : [0, r ] → [0,∞) is called a class of K if it is continuous,
well-defined, and strictly increasing on [0, r ], where φ(0) = 0.

Consider the first-order system of dynamic equations

xΔ = f (t, x), t ≥ t0, x ∈ D ⊂ R
n, (3)

where D is a compact set. Here, the function f is continuous and the existence of solutions
to (3) subject to x(t0) = x0 is guaranteed with the uniqueness. Further, we assume f (t, 0) =
0 ∈ D for all t ∈ T, t ≥ t0 so that x = 0 is a solution of equation (3). For the sake of the
paper, we use the notation x(t, x0, t0) for the solution with initial values x0 := x(t0) ∈ D for
t0 ∈ T.

123



Differential Equations and Dynamical Systems

Definition 4 The equilibrium solution x = 0 of system (3) is called stable if there exists a
function φ ∈ K such that

|x(t, x0, t0)| ≤ φ(|x0|) for all t ∈ T, t ≥ t0.

On the other hand, x = 0 is said to be asymptotically stable if it is stable and if there exists
a positive c ∈ R such that

lim
t→∞ x(t, x0, t0) = 0,

whenever |x0| < c.

Definition 5 Let P : R
n → R be a continuous function with P(0) = 0. Then P is said

to be positive definite (negative definite) on D if there exists a function φ ∈ K, such that
φ(|x|) ≤ P(x)(φ(|x|) ≤ −P(x)) for x ∈ D. On the other hand, P is called positive
semidefinite (negative semidefinite) on D if P(x) ≥ 0(P(x) ≤ 0) for all x ∈ D.

Definition 6 Suppose that the function Q : [t0,∞)×R
n → R is continuous with Q(t, 0) =

0. Then Q is said to be positive definite (negative definite) on t0 ×D if there exists a function
φ ∈ K such that φ(|x|) ≤ Q(t, x) (φ(|x|) ≤ −Q(t, x)) for all t ∈ T, t ≥ t0 and x ∈ D.
On the other hand, Q is called positive semidefinite (negative semidefinite) on t0 × D if
Q(t, x) ≥ 0 (Q(t, x) ≤ 0) for all t ∈ T, t ≥ t0 and x ∈ D.

The following theorems give the stability and asymptotic stability criteria for equation
(3), respectively.

Theorem 3 [4, Theorem 1] The equilibrium solution x = 0 of (3) is stable if there is a
continuously differentiable positive definite function V in a neighborhood of zerowith V̇ (t, x)
is negative semidefinite.

Theorem 4 [4, Corollary 1] The equilibrium solution x = 0 of (3) is asymptotically stable,
provided that there exists a continuously differentiable, positive definite function V in a
neighborhood of zero with V̇ (t, x) negative definite.

Invariance Set Theorem

In this section, we provide an invariance principle for solutions of equation (3) by using
Lyapunov function, see [4]. Let a, b ∈ T, ∞ ≤ a < 0 < b ≤ ∞ and φ : (a, b) → E , where
E is an open set in R

n . Define T (t) : Rn → R
n, such that

x(t, x0) = T (t)x0,

x(0, x0) = x0 = T (0)x0, T (0) = I ,

where I is the identity mapping. More details for the properties of T are given in [4, Section
5].

Definition 7 Suppose that tn ∈ (a, b) is a sequence of points such that tn → b (tn → a) as
n → ∞ and limn→∞ φ(tn) = p. Then p is called a positive (negative) limit point of φ.

Definition 8 A solution x(t, x0) is called positively (negatively) precompact relative to E ,
provided that it is bounded for all t ∈ [0, b(x0))(t ∈ (a(x0), 0]) and has no limit points on
the boundary of E .
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For the convenience, the followings are introduced:

1. H = {x : V̇ (x) = 0, x ∈ Ē ∩ E}.
2. M is the largest invariant set in H .
3. V−1(c) = {x ∈ Ē ∩ E : V (x) = c}, for some finite c.

Theorem 5 Suppose that V is a Lyapunov function of equation (3) on E and x(t, x0) is a
solution of equation (3) that remains in E for all t ∈ [0, b(x0)). If x(t, x0) is precompact,
then x(t, x0) → M ∩ V−1(c) for some c.

Stability Results

This section provides us the stability of equilibrium point x = 0 of system (1), where
x = (α, β, γ ). In order to calculate the derivative of Lyapunov function, we apply equation
(2), which is known as the simple useful formula in the literature. Therefore, the forward
jump operator σ is needed on α of the right hand side of system (1). One can see that this
coincides with the continuous case since σ(t) = t when T = R.

Stability of the Zero Solution

In order to achieve our goal, we first modify the controllers introduced in [5] by replacing
sin β with sin βσ in system (1). This follows from the fact that sin βσ

βσ is bounded but sin β
βσ

may not.

Theorem 6 Consider system (1) with the feedback controller
{

v(t) = k1ασ (t) cosβ(t)

w(t) = k2βσ (t) + k1
sin βσ (t) cosβ(t)

βσ (t) (βσ (t) + k3γ σ (t)) ,
(4)

where k1, k2, k3 > 0. Then the equilibrium solution x = 0 of system (1) is stable.

Proof Consider the Lyapunov function

V (x) = 1

2
(α2 + β2 + k3γ

2), (5)

which is continuously differentiable and positive definite in a neighborhood of zero. Taking
the derivative of (5) by using the product rule for derivatives and (2) give us

V̇ (x) = 1

2

(
αΔ(α + ασ ) + βΔ(β + βσ ) + k3γ

Δ(γ + γ σ )
)

= 1

2

(
αΔ(2ασ − μαΔ) + βΔ(2βσ − μβΔ) + k3γ

Δ(2γ σ − μγ Δ)
)

≤ αΔασ + βΔβσ + k3γ
Δγ σ

= −vασ cosβ + βσ

(
sin βσ

ασ
v − w

)

+ k3γ
σ sin βσ

ασ
v,

where we use the equations of system (1). Now, by using controllers (4), we have

V̇ (x) ≤ −k1(α
σ )2 cos2 β − k2(β

σ )2 ≤ 0, (6)

which implies that V̇ is negative semidefinite and so Theorem 3 completes the proof. ��
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Next question that arises is whether we could show the asymptotic stability of the equilibrium
solution x = 0, i.e., (α, β, γ ) → (0, 0, 0). The following theorem shows that we only achieve
that α and β tend to zero via Theorem 5, which is known as La Salle Invariance set theorem
in the literature.

Theorem 7 Consider system (1)with the feedback controllers (4)and let the solution (α, β, γ )

of system (1) be precompact, then (α(t), β(t), γ (t)) → (0, 0, c1) as t → ∞, where c1 is a
finite number.

Proof Consider the Lyapunov function (5). It is shown that V̇ ≤ 0 in the proof of Theorem 6,
which implies that the Lyapunov function V is bounded. Therefore, the solution (α, β, γ ) of
system (1) is also bounded. Then by Theorem 5, we conclude that V̇ tends to zero. Therefore,
using equation (6) leads us to that α and β also tend to zero. Therefore, this completes the
assertion. ��

In Theorem 7, the asymptotic stability of the equilibrium solution x = 0 is not shown on
general time scales because V̇ is negative semidefinite but not negative definite. Nevertheless,
whenT = R (i.e.,μ(t) = 0 for all t ∈ R), the asymptotic stability of the equilibrium solution
x = 0 is shown by Luca, Oriola and Vendittelli, see [5].

For general time scales, if we could show

βΔ = k1 sin βσ cosβ − k2β
σ − k1

sin βσ cosβ

βσ

(
βσ + k3γ

σ
) → 0 (7)

as β → 0, then we could unify and extend the asymptotic stability result of the system for
general time scales. Nevertheless, one can consider the following discrete time scale, see [1],
in order to show the asymptotic stability of x = 0 of system (1).

Example 1 [1, Example 1.46] Let νn , n ∈ N0 be a sequence of real numbers with νn > 0 for
all n ∈ N such that νn tends to a nonzero finite limit as n → ∞. Let

tn =
n−1∑

k=0

νk .

Consider the time scale T = {tn : n ∈ N}, provided ∑∞
k=0 νk = ∞. Note that σ(tn) = tn+1,

μ(tn) = νn for all n ∈ N and recall that β(t) → 0 as t → ∞ by Theorem 7. Therefore,

βΔ(tn) = β(tn+1) − β(tn)

νn
→ 0

as n → ∞, which implies that γ (tn) → 0 by (7). In conclusion, on this time scale, it could
be shown that (α, β, γ ) can asymptotically be driven to 0.

Asymptotic Stability of the Zero Solution

In Sect. 3.1, the asymptotic stability of the equilibrium solution x = 0 of system (1) cannot
be shown by means of controllers (4) on a general time scale. On the other hand, this section
proposes different controllers for asymptotic stability of the zero solution of system (1).
Therefore, we have the following theorem.
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Theorem 8 System (1) can asymptotically be driven to the origin (0, 0, 0) with the feedback
controllers

⎧
⎪⎨

⎪⎩

v(t) = ασ (t)(k1 cosβ(t) − k2γ σ (t) sin βσ (t))

w(t) = k1 sin βσ (t) cosβ(t) + k3βσ (t) − k2γ σ (t) sin2 βσ (t)

+ 1
βσ (t) sin βσ (t) cosβ(t)γ σ (t)

(
(k2ασ (t))2 + k1k4

)
,

(8)

where ki > 0 for i = 1, . . . , 4.

Proof Consider the Lyapunov function

V (x) = 1

2
(α2 + β2 + k4γ

2), (9)

which is continuously differentiable and positive definite in a neighborhood of zero. By the
similar discussion as in Theorem 6, we have

V̇ (x) ≤ −vασ cosβ + βσ

(
sin βσ

ασ
v − w

)

+ γ σ sin βσ

ασ
v.

Next, by using controllers (8), we have

V̇ (x) ≤ −k1(α
σ )2 cos2 β − k3(β

σ )2 − k2k4(γ
σ )2 sin2 βσ ≤ 0, (10)

which implies that V̇ is negative definite. Then Theorem 4 completes the proof. ��

Simulation Results

In this section, we provide the simulations that help us observe the main results visually
when we reduce system (1) into a specific time scale.

Example 2 Consider system (1) with the feedback controllers (8) when T = R with the
initial values α(0) = 1400, β(0) = 2π

3 , γ (0) = −π
2 . The constants in the control inputs are

k1 = 0.1, k2 = 0.1, k3 = 0.8 and k4 = 0.8. The robot is initiated from an arbitrary position
and move to a desired position. The following figures show that we can take the robot to our
desired point Figs. 2, 3, 4.

Fig. 2 Evaluation of the distance error α
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Fig. 3 Evaluation of the angle β

Fig. 4 Evaluation of the angle γ

Conclusion

In this paper, the stability results of system (1) are shown by proposing two different con-
trollers. Since the asymptotic stability of system (1) cannot be unified on general time scales
by using the controllers (4), motivated from [5], we only give the stability of system (1) in
Sect. 3.1. On the other hand, this leads us to provide the new controllers (8) and we have
successfully obtained the criteria for asymptotic stability of system (1) in Sect. 3.2. There-
fore, we have generalized the results in continuous case to the time scale theory which enable
to reduce the computational cost when simulating the main results. Another thing that one
should observe is that Luca et all used Barbalat Lemma to show the asymptotic stability of
system (1) when T = R in [5]. However, since we do not have the time scale version of
Barbalat Lemma, we had to provide a new controller to show the asymptotic stability for
general time scales.

123



Differential Equations and Dynamical Systems

References

1. Bohner, M., Peterson, A.: Dynamic equations on time scales: an introduction with applications.
Birkhäuser, Boston (2001)

2. Bohner, M., Peterson, A.: Advances in dynamic equations on time scales. Birkhäuser, Boston (2003)
3. Guinaldo, M., Lehmann, D., Sanchez, J., Dormido, S., Johansson, K.H.: Distributed event-triggered

control with network delays and packet losses. IEEE 51st Annual Conference on Decision and Control
(CDC), pp. 1–6 (December, 2012)

4. Hoffacker, J., Tisdell, C.C.: Stability and instability for dynamic equations on time scales. Comput. Math.
Appl. 49, 1327–1334 (2005)

5. Luca, A.D., Oriolo, G.G., Vendittelli, M.: Control of wheeled mobile robots: an experimental overview.
Lecture notes in control and information sciences, 270, 181–226 (2002)

6. Wang,X., Lemmon,M.D.: Event-triggering in distributed networked control systems. IEEETrans.Autom.
Control 56(3), 586–601 (2011)

7. Sahoo, A., Xu, H., Jagannathan, S.: Near optimal event-triggered control of nonlinear discrete-time sys-
tems using neuro-dynamic programming. IEEE Transactions on Neural Networks and Learning systems,
(In press) (2015)

8. Sun, W., Zhang, J., Liu, Z.: Two-time scale redesign for antilock braking systems of ground vehicles.
IEEE Trans. Ind. Electron. 66, 6 (2019)

9. Sun, W., Tang, S., Gao, H., Zhao, J.: Two-time scale tracking control of nonholonomic wheeled mobile
robots. IEEE Trans. Control Syst. Technol. 24, 6 (2016)

10. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEETrans. Autom.Control
52(9), 1680–1685 (2007)

11. Zhong, X., Ni, Z., He, H., Xu, X., Zhao, D.: Event-triggered reinforcement learning approach for unknown
nonlinear continuous-time system. IEEE International Joint Conference on Neural Networks (IJCNN),
pp. 3677–3684 (July, 2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Control of Wheeled Mobile Robots on Time Scales
	Abstract
	Introduction
	Preliminary Results
	Time Scales Calculus
	Stability and Lyapunov Function 
	Invariance Set Theorem

	Stability Results
	Stability of the Zero Solution
	Asymptotic Stability of the Zero Solution

	Simulation Results
	Conclusion
	References




