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Abstract

In this paper, we generalize and compare Gompertz and Logistic dynamic equations in

order to describe the growth patterns of bacteria and tumor. First of all, we introduce two

types of Gompertz equations, where the first type 4-paramater and 3-parameter Gompertz

curves do not include the logarithm of the number of individuals, and then we derive 4-

parameter and 3-parameter Logistic equations. We notice that Logistic curves are better in

modeling bacteria whereas the growth pattern of tumor is described better by Gompertz

curves. Increasing the number of parameters of Logistic curves give favorable results for

bacteria while decreasing the number of parameters of Gompertz curves for tumor improves

the curve fitting. Moreover, our results overshadow some of the existing results in the

literature.

Introduction

Most of the growth curves are described by linear, power, parabolic, power-exponential, logis-

tic, log-logistic, von Bertalanffy, Gompertz, and Richards curves; see [1], [2], [3], [4], [5], and

[6] for the tumor, [7] for the human fetus, [8] for the human life. A recent research article [8]

related with a human life modeled by Gompertz and Mirror Gompertz differential equations

are

ðln xÞ0 ¼ � b ln x; ð1Þ

and

x0 ¼ � bð1 � xÞ ln ð1 � xÞ; ð2Þ

respectively, where β is a positive parameter. The well-known logistic equation in the
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literature, see [9] is given by

x0 ¼ kx 1 �
x
K

� �
; ð3Þ

where k is the proportionality constant and K is the carrying capacity.

In this study, mathematical modeling is applied to the Pseudomonas putida and mammary

tumor datas given in [10, 11], respectively. Note that Pseudomonas putida is a bacterium

found in most soil and water habitats, and is significant to the environment due to its complex

metabolism and ability to control pollution, [12] and [13]. We model their growth patterns by

continuous and discrete Gompertz and Logistic curves. To achieve our goal, we derive

4-parameter and 3-parameter Gompertz and Logistic dynamic equations. We first propose

two types of Gompertz dynamic equations: The first type Gompertz dynamic equations are

motivated by [14]. We contribute two first type continuous Gompertz curves to the literature.

All of the discrete Gompertz curves in this type are new. 4-parameter second type Gompertz

dynamic equations are motivated by [2] in which only 3-parameter discrete Gompertz curves

are considered. 3-parameter second type continuous Gompertz are investigated earlier in [10].

Inspired by [15], we come up with 4-parameter Logistic dynamic equations while 3-parameter

Logistic dynamic equations are constructed earlier in [16]. 4-parameter Logistic discrete

curves are new. To establish both dynamic equations, we use the variation of constant formulas

together with the circle dot multiplication and the circle minus substraction on time scales.

We refer readers to [17] and [18] by Bohner and Peterson for the theory of time scales

calculus.

The parameters of these models are estimated by NonlinearModelFit function of Wolfram

Mathematica 11.0 applying Monte Carlo simulation and our comparison is based on outputs

following from the p-values of parameters, adjusted R-squared, and RMSE (root mean square

error), RRMSE (Relative Root Mean Square Error), MAPE (Mean Absolute Percent Error),

MAE (mean absolute error), U1 (Theil inequality coefficient, Theil’s U1), and U2 (Theil

inequality coefficient, Theil’s U2). We use the Mathematica 11 program for the goodness of fit

test of the models. Having at least three small values of each determined statistical criterion,

the p value less than 0.05 for each parameter, and adjusted R-squared value close to 1 show bet-

ter performance in terms of goodness of fit.

Outline of this paper is as follows: In Section 2, we introduce the time scales calculus

together with some preliminary results. Sections 3 and 4 are related with first and second type

Gompertz dynamic equations. In each section we obtain 4-parameter and 3-parameter contin-

uous and discrete Gompertz curves. In Section 6, Logistic dynamic equations are introduced

and we explicitly calculate 4-parameter and 3-parameter continuous and discrete Logistic

curves. In the last section, we discuss how Gompertz and Logistic curves fit the growth of Pseu-

domonas putida and mammary tumor and include our conclusion.

Preliminary results

A time scale, T, is an arbitrary nonempty closed subset of the real numbers R. The theory of

time scales is to introduce a new calculus so that we can unify the continuous and discrete

analysis. Here, we give basic definitions and some essential results without proofs. Neverthe-

less, we mainly refer readers two books [17] and [18] by Bohner and Peterson and the manu-

script [16] by Akin-Bohner and Bohner.

The forward jump operator σ on T is defined as sðtÞ≔inffs > t : s 2 Tg 2 T; for all t 2 T.

For this definition we also have sð;Þ ¼ supT. The backward jump operator r on T is defined

by rðtÞ≔ supfs < t : s 2 Tg 2 T; for all t 2 T. Here, we have rð;Þ ¼ inf T. If σ(t) > t, we say
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t is right-scattered, while if ρ(t) < t we say t is left-scattered. If σ(t) = t, we say t is right-dense,
while if ρ(t) = t we say t is left-dense. The graininess function m : T7!½0;1Þ is defined by μ(t):
= σ(t) − t. It is apparent that for T ¼ Z; σ(t) = t + 1, ρ(t) = t − 1 and for T ¼ R; σ(t) = t, ρ(t) = t.
The set Tk is derived from T: If T has left-scattered maximum m, then Tk ¼ T � fmg.
Otherwise, Tk ¼ T. The following notations are also useful: fσ(t) = f(σ(t)). Note that

t 2 ½t0;1ÞT ¼ ½t0;1Þ \ T.

Assume f : T7!R and let t 2 Tk, then we define fΔ(t) to be the number (provided it exists)

with the property that given any � > 0, there is a neighborhood U of t such that

j ½f ðsðtÞÞ � f ðsÞ� � f DðtÞ½sðtÞ � s� j� � j sðtÞ � s j;

for all s 2 U. fΔ(t) is called the delta derivative of f(t) at t. Note that the delta-derivative turns

out to be the usual derivative when T ¼ R while it is the forward difference operator when

T ¼ Z. If f is differentiable at t, then f is continuous at t. If f is continuous at t and t is right-

scattered, then f is differentiable at t with

f DðtÞ ¼
f ðsðtÞÞ � f ðtÞ

mðtÞ
:

If f is differentiable and t is right-dense, then

f DðtÞ ¼ lim
s!t

f ðtÞ � f ðsÞ
t � s

:

If f is differentiable at t, then

f sðtÞ ¼ f ðtÞ þ mðtÞf DðtÞ: ð4Þ

If f ; g : T7!R are differentiable at t 2 Tk, then the product fg : T7!R is also differentiable at t
with

ðfgÞDðtÞ ¼ f DðtÞgðtÞ þ f ðsðtÞÞgDðtÞ:

If f is continuous at each right-dense point t 2 T and whenever t 2 T is left-dense lim
s!t�

f ðsÞ

exists as a finite number, then we say that f : T7!R is rd-continuous. A function F : Tk 7!R is

called an antiderivative of f : T7!R provided FΔ(t) = f(t) holds for all t 2 Tk. In this case, we

define the integral of f by

Z t

a
f ðsÞDs ¼ FðtÞ � FðaÞ for t 2 T: ð5Þ

If 1 + μ(t)p(t) 6¼ 0 for all t 2 Tk, p : Tk 7!R is called regressive. The set of all regressive and rd-

continuous functions is denoted by R. If 1 + μ(t)p(t) > 0 for all t 2 Tk, p : Tk 7!R is called posi-
tively regressive. The set of all positively regressive and rd-continuous functions is denoted by

R+.

If p, q 2 R and α is a constant, then we define

�pðtÞ ¼ �
pðtÞ

1þ mðtÞpðtÞ
; pðtÞ � qðtÞ ¼

pðtÞ � qðtÞ
1þ mðtÞqðtÞ

; ð6Þ

and

ðp� qÞðtÞ ¼ pðtÞ þ qðtÞ þ mðtÞpðtÞqðtÞ

for all t 2 Tk. Finding a simple formula of the derivative of any power of a function yields to
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the introduction of a circle dot multiplication. A circle dot multiplication� is defined in [16]

as

ða� pÞðtÞ ¼ apðtÞ
Z 1

0

ð1þ hmðtÞpðtÞÞa� 1dh:

Note that�p = −p, p� q = p + q and α� p = αp for the continuous case. If p is regressive,

then we define the exponential function by

epðt; sÞ ¼ exp
Z t

s
xmðpðtÞÞDt

� �

for s; t 2 T; ð7Þ

where xhðzÞ ¼ 1

h Logð1þ hzÞ; h > 0 is the cylinder transformation such that ξ0(z) = z. If p :

Tk 7!R is rd-continuous and regressive, then the exponential function ep(t, t0) is the unique

solution of the IVP

xD ¼ pðtÞx; xðt0Þ ¼ 1

on T for each fixed t0 2 T
k: For data analysis we need to calculate exponential functions

ebðt; t0Þ ¼ ebðt� t0Þ; e�bðt; t0Þ ¼ e� bðt� t0Þ when T ¼ R ð8Þ

ebðt; t0Þ ¼ ð1þ bÞ
t� t0 ; e�bðt; t0Þ ¼ ð1þ bÞ

� ðt� t0Þ when T ¼ Z ð9Þ

for a regressive constant β, see Table 2.4 in [17].

We use the following properties of the exponential function ep(t, s), t; s 2 T.

Theorem 0.1. If p, q are regressive and t0 2 T, then

1. ep(t, t)� and e0(t, s)� 1;

2. ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

3.
1

epðt; sÞ
¼ e�pðt; sÞ ¼ epðs; tÞ;

4.
epðt; sÞ
eqðt; sÞ

¼ ep�qðt; sÞ;

5. ep(t, s)eq(t, s) = ep�q(t, s);

6. if p> 0 for all t 2 T, then ep(t, t0)> 0 for all t 2 T;

7. if p 2 R+, then ep(t, t0)> 0 for all t 2 T.

In addition, two of the useful formulas for a circle dot are

ea�pðt; t0Þ ¼ ðepðt; t0ÞÞ
a
; ð10Þ

and

1þ mða� pÞ ¼ ð1þ mpÞa; ð11Þ

where p is a regressive function and α is a constant, see [16].

The followings are the variation of constants formulas, see Theorems 2.74 and 2.77 in [17].

The equation

xD ¼ pðtÞxþ f ðtÞ ð12Þ
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is called regressive if xΔ = p(t)x is regressive (i.e., p is regressive) and f : T! R is rd-

continuous.

Theorem 0.2. Suppose (12) is regressive. Let t0 2 T and x0 2 R. The unique solution of the
IVP

xD ¼ pðtÞxþ f ðtÞ; xðt0Þ ¼ x0

is given by

xðtÞ ¼ epðt; t0Þx0 þ

Z t

t0

epðt; sðtÞÞf ðtÞDt:

Theorem 0.3. Suppose (12) is regressive. Let t0 2 T and x0 2 R. The unique solution of the
IVP

xD ¼ � pðtÞxs þ f ðtÞ; xðt0Þ ¼ x0

is given by

xðtÞ ¼ e�pðt; t0Þx0 þ

Z t

t0

e�pðt; tÞf ðtÞDt:

First type gompertz dynamic equations

In this section, we will introduce Gompertz dynamic curves motivated by the 4-parameter

Gompertz curve

oðtÞ ¼ Bþ A exp ð� expð� Kðt � t0ÞÞ; t 2 R ð13Þ

given in [19] for the growth curve analyses of bacterial counts. Here, K can be found as the

growth rate coefficient, t0 is the initial time, A + B is the carrying capacity of the environment

for the population. To explain the carrying capacity notion we can say that every environment

has its own limits, therefore it is impossible for species to grow up infinitely. Thus, the number

of the population should be finite.

In order to obtain the Gompertz model in the continuous case, we differentiate Eq (13) and

obtain

o0 ¼ AK expf� expf� Kðt � t0Þgg expf� Kðt � t0Þg

¼ ½oðtÞ � B�K expf� Kðt � t0Þg:

In addition, note that we have

e�ðK��e�K Þðt; t0Þ ¼
1

eK� �e�K ðt; t0Þ
¼

1

e�e�K ðt; t0Þ

 !K

¼ ðee�K ðt; t0ÞÞ
K
¼ eK�e�K ðt; t0Þ

ð14Þ

on ½t0;1ÞT, where we use Theorem 0.1 and (10). Since e�K(t, t0) = e−K(t−t
0) for t 2 R, and (14)

holds, then we obtain

e�ðK��e�K Þðt; t0Þ ¼ exp
exp ð� Kðt � t0ÞÞ

K
�

1

K

� �� K

¼ e expf� expf� Kðt � t0Þgg; t 2 R:
ð15Þ
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Motivated by the calculation above, we have the following initial value problem modeling

4-parameter Gompertz curve on time scales.

Theorem 0.4. The initial value problem

oD ¼ � ðK ��e�Kðt; t0ÞÞos þ BðK ��e�Kðt; t0ÞÞ

oðt0Þ ¼ o0

ð16Þ

has the solution of the form

o ¼ Bþ ðo0 � BÞeK�e�K ðt; t0Þ

t 2 ½t0;1ÞT, where K is the growth rate and t0 is the initial time, ω0 is the value of the function
at the initial time and B is the coefficient that has an impact on carrying capacity.

Proof. We notice that the positivity of K implies the positivity of e�K by Theorem 0.1. Since

1þ mð�e�KÞ ¼ 1

1þme�K
> 0, we have the positively regressivity of�e�K. Since 1 + μ(K��e�K)

= (1 + μ(�e�K))K> 0 by (11), the dynamic equation in the IVP (16) is regressive. Therefore,

we apply Theorem 0.3 and obtain the unique solution for t 2 ½t0;1ÞT

o ¼ e�ðK��e�K Þðt; t0Þo0 þ B
Z t

t0

e�ðK��e�K Þðt; tÞðK ��e�Kðt; t0ÞÞDt

¼ eK�e�K ðt; t0Þo0

þBeK��e�K ðt0; tÞ
Z t

t0

eK��e�K ðt; t0ÞðK ��e�Kðt; t0ÞÞDt

¼ eK�e�K ðt; t0Þo0 þ BeK��e�K ðt0; tÞ
Z t

t0

ðeK��e�K ðt; t0ÞÞ
D
Dt

¼ eK�e�K ðt; t0Þo0 þ BeK��e�K ðt; t0Þ½eK��e�K ðt; t0Þ � 1�

¼ Bþ ðo0 � BÞeK�e�K ðt; t0Þ;

ð17Þ

where we use (14) and Theorem 0.1.

Example 0.5. Let T ¼ R. Then the continuous Gompertz curve

o ¼ Bþ eðo0 � BÞ expf� expf� Kðt � t0Þgg ð18Þ

is obtained from (17) for t 2 ½t0;1ÞR by using Eqs (8) and (15). This is compatible with the

continuous Gompertz growth curve (13) by taking A = e(ω0 − B) in (13).

Example 0.6. Let T ¼ Z. Since e�K(t, t0) = (1 + K)−(t−t
0) for t 2 ½t0;1ÞZ by (9), (14) yields

eK�e�K ðt; t0Þ ¼ ½ee�K ðt; t0Þ�
K

¼ exp
Pt� 1

s¼t0
ln 1þ

1

ð1þ KÞs� t0

� �� �� �K

¼ exp ln
Qt� 1

s¼t0
1þ

1

ð1þ KÞs� t0

� �� �� �K

¼
Qt� 1

s¼t0

1þ ð1þ KÞs� t0

ð1þ KÞs� t0

� �K

; t 2 ½t0;1ÞZ
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and so

e�ðK��e�K Þðt; t0Þ ¼
Yt� 1

t¼t0

ð1þ KÞt� t0

1þ ð1þ KÞt� t0

" #� K

ð19Þ

for t 2 ½t0;1ÞZ. Thus, the discrete Gompertz growth curve

o ¼ Bþ ðo0 � BÞ
Yt� 1

t¼t0

1þ ð1þ KÞt� t0

ð1þ KÞt� t0

" #K

ð20Þ

again follows from (17) for t 2 ½t0;1ÞZ.

Motivated by the first variation of constant formula, Theorem 0.2, we derive another Gom-

pertz curve on time scales.

Theorem 0.7. The initial value problem

oD ¼ �ðK � e�Kðt; t0ÞÞoþ Bð�ðK � e�Kðt; t0ÞÞÞ

oðt0Þ ¼ o0

ð21Þ

has the solution of the form

o ¼ ðo0 þ BÞe�ðK�e�K Þðt; t0Þ � B ð22Þ

for t 2 ½t0;1ÞT, where K is the decay rate coefficient and regeressive, t0 is the initial time, ω0 is
the value of the function at the initial time and B is the coefficient that has an impact on carrying
capacity.

Proof. Since K is regressive, e�K is also regressive by (7). The dynamic equation in the IVP

(21) is regressive. Then, in order to obtain the unique solution (22) we apply Theorem 0.3 for

t 2 ½t0;1ÞT

o ¼ e�ðK�e�K Þðt; t0Þo0 þ B
Z t

t0

e�ðK�e�K Þðt; sðtÞÞð�ðK � e�Kðt; t0ÞÞÞDt

¼ e�ðK�e�K Þðt; t0Þo0

� Be�ðK�e�K Þðt; t0Þ
Z t

t0

eK�e�K ðt; t0ÞðK � e�Kðt; t0ÞÞDt

¼ e�ðK�e�K Þðt; t0Þo0 � Be�ðK�e�K Þðt; t0Þ
Z t

t0

ðeK�e�K ðt; t0ÞÞ
D
Dt

¼ e�ðK�e�K Þðt; t0Þo0 � Be�ðK�e�K Þðt; t0Þ½eK�e�K ðt; t0Þ � 1�

¼ ðo0 þ BÞe�ðK�e�K Þðt; t0Þ � B;

where we use (14) and Theorem 0.1.

Example 0.8. Let T ¼ R. Then the alternative continuous Gompertz curve

o ¼
1

e
ðo0 þ BÞ expfexpf� Kðt � t0Þgg � B ð23Þ

is obtained from (22) for t 2 R. It is worth to mention that Eq (23) is a new Gompertz curve in

the continuous case.
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Example 0.9. Let T ¼ Z. Then using (19), we have

e�ðK�e�K Þðt; t0Þ ¼
Yt� 1

t¼t0

ð1þ KÞt� t0

1þ ð1þ KÞt� t0

" #K

for t 2 ½t0;1ÞZ. Since

e�ðK�e�K Þ ¼
1

eK�e�K
¼

1

ee�K

" #K

;

the alternative discrete Gompertz growth curve

o ¼ ðo0 þ BÞ
Yt� 1

t¼t0

ð1þ KÞt� t0

1þ ð1þ KÞt� t0

" #K

� B ð24Þ

again follows from (22) for t 2 ½t0;1ÞZ.

The Gompertz growth curve (23) is given as 4-parameter Gompertz growth curve in [19].

From this point of view, the 3-parameter Gompertz growth curve on time scales

o ¼ o0eK�e�K ðt; t0Þ ð25Þ

is obtained from (17) when B = 0, and so the 3-parameter continuous and discrete Gompertz

curves are

o ¼ eo0expf� expf� Kðt � t0Þgg ð26Þ

for t 2 ½t0;1ÞR and for t 2 ½t0;1ÞZ

o ¼ o0

Yt� 1

t¼t0

1þ ð1þ KÞt� t0

ð1þ KÞt� t0

" #K

; ð27Þ

respectively. From (22) when B = 0, the alternative 3-parameter continuous and discrete Gom-

pertz curves

o ¼
1

e
o0expfexpf� Kðt � t0Þgg ð28Þ

and

o ¼ o0

Yt� 1

t¼t0

1þ ð1þ KÞt� t0

ð1þ KÞt� t0

" #� K

; ð29Þ

are gained to the literature, respectively.

The zwietering modification of gompertz growth curve

The Gompertz growth curve is reparameterized in order to model the bacteria growth popula-

tion in food and is stated as

w ¼ A expf� expf
eKz

A
ðT � tÞ þ 1gg ð30Þ

in [14] for t 2 R, where Kz is the absolute growth rate at time T, so called lag time, which is
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interpreted as the time between when a microbial population is transferred to a new habitat

recovers and when a considerable cell division occurs.

In order to find a corresponding dynamic model, we rewrite (30) as

w ¼ Aðexpf� expf�
eKz

A
tggÞe

eKz
A Tþ1

ð31Þ

so that we can use the property of circle dot (10) for the unification the continuous and dis-

crete cases. Therefore, using (15) and (14) yield the dynamic Zwietering Modification Gom-

pertz curve

w ¼ Ae�
eKz
A Tþ1ð Þ e

�
eKz
A ��e�eKzA

� �ðt; 0Þ

0

@

1

A

e
eKz
A Tþ1

¼ Ae�
eKz
A Tþ1ð Þe

e
eKz
A Tþ1ð Þ

��
eKz
A ��e�eKzA

� �ðt; 0Þ

¼ Ae�
eKz
A Tþ1ð Þe

e
eKz
A Tþ1ð Þ

�
eKz
A �e�eKzA

� �ðt; 0Þ:

ð32Þ

Therefore, we claim that (32) is the solution of the IVP

oD ¼ e
eKz
A Tþ1ð Þ �

eKz
A � e

�
eKz
A

� �� �
w

oð0Þ ¼ Ae�
eKz
A Tþ1ð Þ:

ð33Þ

Since (30) is the continuous modified Gompertz growth curve, the discrete modified Gom-

pertz growth curve follows from (32).

Example 0.10. Let T ¼ Z. Then the discrete Zwietering modification of Gompertz growth

curve is

o ¼ Ae�
eKz
A Tþ1ð Þ

Yt� 1

t¼0

1þ
eKz
A

� �t

1þ 1þ
eKz
A

� �t

" #� eKz
A e

eKz
A Tþ1ð Þ

ð34Þ

obtained from (19) for t 2 ½0;1ÞZ.

Gompertz-laird growth curve

This model is mainly used for the modeling of tumor growth. The Laird re-parameterization

prevails even today as the most frequently fitted Gompertz version in cancer research, and is

now also commonly fitted to growth data in other fields such as those of domestic (e.g. poultry

and livestock, marine (e.g. molluscs, fish, and dolphins) animals.

The continuous Gompertz-Laird growth curve is given by

o ¼ o0e�
L
Kðe
� Kt � 1Þ

for t 2 ½0;1ÞR in [14], which is equivalent to

w ¼ w0e
L
Kðe� e� KtÞ

L
K ð35Þ

for t 2 ½0;1ÞR, where the parameter L describes the initial specific growth rate that is not a

notion that measures the relative growth or absolute growth. More precisely, we can say that
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the absolute growth rate at t = 0 is ω0.L Thus, the term L can be described as division of the ini-

tial absolute growth rate with the initial value.

Similarly, by using (15) we obtain the Gompertz-Laird growth curve on time scales as

w ¼ w0ðe�ðK��e�K Þðt; 0ÞÞ
L
K

¼ w0eL
K�ð�ðK��e�K ÞÞ

ðt; 0Þ

¼ w0eL
K�ðK�e�K Þ

ðt; 0Þ

ð36Þ

for t 2 ½0;1ÞT and so (36) is the solution of the IVP

wD ¼
L
K
� ðK � e�KÞw

oð0Þ ¼ o0:

ð37Þ

Since (35) is the continuous Gompertz-Laird growth curve, the following example gives the

discrete Gompertz-Laird growth curve.

Example 0.11. Let T ¼ Z. Then we obtain

o ¼ o0

Yt� 1

t¼0

ð1þ KÞt

1þ ð1þ KÞt

" #� L

ð38Þ

as the discrete Gompertz-Laird growth curve for t 2 ½t0;1ÞZ, where we use again (19).

If L = Km in (36), the Zweifel and Lasker re-parametrization dynamic equation is obtained

for studying fish growth. Moreover, the continuous and discrete curves are given in (35), (38),

respectively. Similarly, if L ¼ ln A
o0

� �K
in (36), we derive the dynamic form of Simpler W0

form of Gompertz Laird growth curve which prevails on. Moreover, the continuous and dis-

crete curves are given in (35) and (38), respectively. Note that all of first type Gompertz curves

in the discrete case are new.

Second type gompertz dynamic equations

It is clear that (13) is not a Gompertz model when the dependent variable is log-transformed.

In this subsection, we will derive Gompertz dynamic equations involving logarithmic func-

tions. This idea of the derivation of Gompertz dynamic equations is inspired from the Gom-

pertz difference equation

lnGðt þ 1Þ ¼ aþ b lnGðtÞ; t 2 Z ð39Þ

where a is taken as the growth rate and b is taken as the exponential rate of growth decelera-

tion, which was firstly given by Bassukas et. al. [3]. The equivalent form of (39) is given by

DlnGðtÞ ¼ aþ ðb � 1ÞlnGðtÞ; t 2 Z ð40Þ

and so the continuous version becomes

½lnGðtÞ�
0

¼ aþ ðb � 1Þ lnGðtÞ; t 2 R: ð41Þ

Unifying (40) and (41), we end up by

½lnGðtÞ�D ¼ aþ ðb � 1Þ lnGðtÞ; t 2 T: ð42Þ

By the second variation of constants formula, Theorem 0.3, we get the alternative dynamic
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equation

½lnGðtÞ�D ¼ a � ðb � 1Þ lnGðsðtÞÞ; t 2 T: ð43Þ

Notice that Eq (42) turns out to be (39) when T ¼ Z while (43) turns out to be

lnGðt þ 1Þ ¼
a
b
þ
lnGðtÞ

b
; ð44Þ

for a nonzero constant b and when T ¼ R; we obtain the following Gompertz differential

equation from the Gompertz dynamic Eq (43) as

½lnGðtÞ�
0

¼ a � ðb � 1Þ lnGðtÞ; ð45Þ

which is equivalent to Gompertz differential Eq (1) when a = 0, b − 1 = β, and G = x in (45). In

[8], Gompertz differential Eq (41) with a = 0 is called the Mirror Gompertz differential equa-

tion, and is equivalent to (2) when a = 0, b − 1 = β, and G = 1 − x in (41).

From now on, we take a = α and b − 1 = β in (42) and (43) and assume

lnGðt0Þ ¼ g0; ð46Þ

where g0 is a real number. The following theorems yield the second type Gompertz dynamic

curves.

Theorem 0.12. Suppose that β is regressive and α> 0. Then the solution of the IVP (42)–(46)

is given by

GðtÞ ¼ exp ebðt; t0Þ g0 þ a

Z t

t0

ebðt0; sðtÞÞDt

" # !

ð47Þ

for t 2 ½t0;1ÞT.

Proof. If ln G(t) is taken as u(t), then the IVP (42)–(46) becomes uΔ(t) = α + βu(t), u(t0) =

g0, t 2 ½t0;1ÞT. Then by Theorems 0.1 and 0.2, we obtain

uðtÞ ¼ ebðt; t0Þg0 þ a
R t
t0
ebðt; sðtÞÞDt

¼ ebðt; t0Þ½g0 þ a
R t
t0
e�bðt; t0Þebðt; sðtÞÞDt�

¼ ebðt; t0Þ½g0 þ a
R t
t0
ebðt0; sðtÞÞDt�; t 2 ½t0;1ÞT:

Since G = eu, (47) is obtained as the solution of the IVP (42)–(46).

Theorem 0.13. Suppose β is regressive and α> 0. Then the solution of the IVP (43)–(46) is
given by

GðtÞ ¼ exp e�bðt; t0Þ g0 þ a

Z t

t0

e�bðt0; tÞDt

" # !

ð48Þ

for t 2 ½t0;1ÞT.
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Proof. If ln G(t) is taken as u(t), then the IVP (43)–(46) turns out to be uΔ(t) = α−βuσ(t), u
(t0) = g0, t 2 ½t0;1ÞT. Again, Theorems 0.1 and 0.3 yield

uðtÞ ¼ e�bðt; t0Þg0 þ a
R t
t0
e�bðt; tÞDt

¼ e�bðt; t0Þ½g0 þ a
R t
t0
ebðt; t0Þe�bðt; tÞDt�

¼ e�bðt; t0Þ½g0 þ a
R t
t0
e�bðt0; tÞDt�

for t 2 ½t0;1ÞT. Since G = u, (48) is obtained as the solution of the IVP (43)–(46).

Example 0.14. Let T ¼ R. Then the solutions of the IVPs (42)–(46) and (43)–(46) are

GðtÞ ¼ exp ðebðt� t0Þ½g0 þ a
R t
t0
e� bðt� t0Þdt�Þ

¼ exp ebðt� t0Þ g0 þ
a

b
ð1 � e� bðt� t0ÞÞ

� �� �

¼ exp g0 þ
a

b

� �

ebðt� t0Þ �
a

b

� �

;

ð49Þ

and

GðtÞ ¼ exp ðe� bðt� t0Þ½g0 þ a
R t
t0
ebðt� t0Þdt�Þ

¼ exp e� bðt� t0Þ g0 þ
a

b
ðebðt� t0Þ � 1Þ

� �� �

¼ exp g0 �
a

b

� �

e� bðt� t0Þ þ
a

b

� �

;

ð50Þ

respectively for t 2 [t0,1) and here we use (8).

Example 0.15. Let T ¼ Z. Then the solutions of the IVPs (42)–(46) and (43)–(46) are

GðtÞ ¼ exp ðebðt; t0Þ½g0 þ a
R t
t0
ebðt0; sðtÞÞDt�Þ

¼ exp ððbþ 1Þ
ðt� t0Þ½g0 þ a

Xt� 1

t¼t0

ð1þ bÞ
� ðtþ1� t0Þ�Þ

¼ exp ððbþ 1Þ
ðt� t0Þ½g0 þ að1þ bÞ

� ðt� t0Þ
Xt� 1

t¼t0

ð1þ bÞ
t� t0 �Þ

¼ exp ðbþ 1Þ
ðt� t0Þ g0 þ að1þ bÞ

� ðt� t0Þ ð1þ bÞ
t� t0 � 1

b

� �� �

¼ exp g0 þ
a

b

� �

ðbþ 1Þ
t� t0 �

a

b

� �

ð51Þ
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and

GðtÞ ¼ exp ðe�bðt; t0Þ½g0 þ a
R t
t0
e�bðt0; tÞDt�Þ

¼ exp ððbþ 1Þ
� ðt� t0Þ½g0 þ a

Pt� 1

t¼t0
ð1þ bÞ

t� t0 �Þ

¼ exp ðbþ 1Þ
� ðt� t0Þ g0 þ a

ð1þ bÞ
t� t0 � 1

b

� �� �

¼ exp g0 �
a

b

� �

ðbþ 1Þ
� ðt� t0Þ þ

a

b

� �

;

ð52Þ

respectively for t 2 ½t0;1ÞZ and here we use (9).

In (51) by taking t0 = 0, β = b − 1 and α = a Equation 3.1 is obtained in [11]. Both continu-

ous Gompertz growth curves (18) and (50) are obtained from the IVPs (13) and (43)–(46). If

we let B = 0, eo0 ¼ e
a
b; K = β in (18), and g0 �

a

b
¼ � 1 in (50), we observe that

e:eg0e�
a
b ¼ e:e� 1 ¼ 1

which implies o0 ¼ eg0 : Similarly, the continuous Gompertz curves (23) and (49) are the solu-

tions of the IVPs (21) and (42)–(46). If we let B = 0, 1

eo0 ¼ e�
a
b; β = −K in (23), and g0 þ

a

b
¼ 1

in (49), we observe that

e� 1:eg0e
a
b ¼ e� 1e ¼ 1

which implies o0 ¼ eg0 : From these observations, we conclude the 3-parameter first type con-

tinuous Gompertz curve and the second type continuous Gompertz curve are identical. How-

ever, since such an intimate relation among the discrete curves cannot be observed,

considering first and second type discrete Gompertz curves contributes to the literature.

Logistic dynamic equations

In this section, we derive 4-parameter and 3-parameter Logistic continuous and discrete

curves from Logistic dynamic equations.

3-Parameter logistic dynamic curves

Since there are two versions of linear equations

uD ¼ pðtÞuþ f ðtÞ; uD ¼ � pðtÞus þ f ðtÞ;

there are two Logistic dynamic equations

LD ¼ ½�ðpðtÞ þ f ðtÞLÞ�L; ð53Þ

and

LD ¼ ½pðtÞ � ðf ðtÞLÞ�L; ð54Þ

respectively, see [16]. By using the definition of circle minus (6), Logistic dynamic Eqs (53)

and (54) turn out to be the typical Logistic differential Eq (3) under certain conditions on p
and f when T ¼ R. In [16], it is shown that the solutions of (53) and (54) subject to

Lðt0Þ ¼ l0 6¼ 0 ð55Þ

PLOS ONE Gompertz and logistic dynamic equations

PLOS ONE | https://doi.org/10.1371/journal.pone.0230582 April 9, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0230582


are given by

LðtÞ ¼
e�pðt; t0Þ

1

l0
þ

Z t

t0

e�pðsðtÞ; t0Þf ðtÞDt
;

ð56Þ

and

LðtÞ ¼
epðt; t0Þ

1

l0
þ

Z t

t0

epðt; t0Þf ðtÞDt
;

ð57Þ

see Theorem 4.2 in [16]. Here, we assume that p is regressive, f is a rd-continuous function.

We now calculate continuous and discrete Logistic solutions in order to compare their data fit-

ting. In population dynamics, one often assumes that there exists a constant N 6¼ 0 such that p
(t) = Nf(t) for all t 2 T.

Example 0.16. Let T ¼ R, t0 = 1, f = α and p = β, where α and β are constants. Then (56)

and (57) turn out to be

L ¼
1

�
a

b
þ

1

l0
þ
a

b

� �

ebðt� 1Þ ð58Þ

and

L ¼
1

a

b
þ

1

l0
�
a

b

� �

e� bðt� 1Þ ; ð59Þ

respectively.

Example 0.17. Let T ¼ Z, t0 = 1, f = α and p = β, where α and β are constants. (56) and (57)

turn out to be

L ¼
1

�
a

b
þ

1

l0
þ
a

b

� �

ð1þ bÞ
t� 1 ð60Þ

and

L ¼
1

a

b
þ

1

l0
�
a

b

� �

ð1þ bÞ
� tþ1

;
ð61Þ

respectively.

4-Parameter logistic dynamic curves

The 4-parameter Logistic curve

oðtÞ ¼ f �
1

b
f þ

1

f � s �
b
f

� �
ekt
; t 2 R ð62Þ

is introduced and discussed in [15], where k, f, and s are positive constants and b is a real
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number. If we let b = 1 in (62), then (62) and (3) are equivalent. Equivalently, we have

oðtÞ ¼ f � f

bþ f
f � s� b

� �
ekt
; t 2 R:

ð63Þ

Motivated by (63), we purpose the 4-parameter logistic dynamic curve as

oðtÞ ¼ f � f

bþ f
f � s� b

� �
ekðt;0Þ

; t 2 T:
ð64Þ

To obtain the 4-parameter logistic dynamic equation, we differentiate Eq (64) and derive

oD ¼
f f � s

b � bð Þkekðt;0Þþkfb� kfb

bþ f
f � s� b

� �
ekðt;0Þ

� �
bþ f

f � s� b

� �
esk ðt;0Þ

� �

¼
kf bþ f � s

b � bð Þekðt;0Þ½ �� kfb

bþ f
f � s� b

� �
ekðt;0Þ

� �
bþ f

f � s� b

� �
esk ðt;0Þ

� �

¼
kf

bþ f
f � s� b

� �
esk ðt;0Þ

� � �
kfb

bþ f
f � s� b

� �
ekðt;0Þ

� �
bþ f

f � s� b

� �
esk ðt;0Þ

� �

¼ � kos þ kf � kfb

bþ f
f � s� b

� �
ekðt;0Þ

� �
bþ f

f � s� b

� �
esk ðt;0Þ

� �

þ
kfb

bþ f
f � s� b

� �
ekðt;0Þ
�

kfb

bþ f
f � s� b

� �
ekðt;0Þ

¼ � kos þ kf þ kfb

bþ f
f � s� b

� �
ekðt;0Þ

os �
kfb

bþ f
f � s� b

� �
ekðt;0Þ

¼ � k 1 � b

bþ f
f � s� b

� �
ekðt;0Þ

2

4

3

5os þ kf 1 � b

bþ f
f � s� b

� �
ekðt;0Þ

2

4

3

5:

ð65Þ

Hence, we obtain the 4-parameter logistic dynamic equation as:

oDðtÞ ¼ � pðtÞosðtÞ þ fpðtÞ; t 2 T ð66Þ

where

pðtÞ ¼ k 1 � b

bþ f
f � s� b

� �
ekðt;0Þ

2

4

3

5; t 2 T: ð67Þ

Theorem 0.18. Let k, f, s be positive constants. Consider the 4-parameter logistic dynamic Eq

(66) with the initial condition

oð0Þ ¼ s: ð68Þ

Then,

oðtÞ ¼ f þ ðs � f Þe�pðt; 0Þ; t 2 T ð69Þ

is the unique solution of the IVP (66)–(68) where p is defined as in (67).
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Proof. To get the desired result, we use Theorem 0.3. Therefore, we have

oðtÞ ¼ se�pðt; 0Þ þ
Z t

0

fpe�pðt; tÞDt

¼ se�pðt; 0Þ þ
Z t

0

fpðtÞepðt; tÞDt

¼ se�pðt; 0Þ þ f ð1 � e�pðt; 0ÞÞ

¼ f þ ðs � f Þe�pðt; 0Þ; t 2 T;

which completes the proof.

Example 0.19. If T ¼ Z; then the solution in (69) turns out to be

wðtÞ ¼ f þ ðs � f Þ 1

Qt� 1

t¼0
1þk �

b

bþ f
f � s � b
� �

ð1þ kÞt
þ 1

0

@

1

A

2

4

3

5

;

ð70Þ

where we use (9).

Let b = 1 in (67). Note that p ¼ k
fo and this means that Eq (66) turns out to be

oD ¼ �
k
f
oos þ ko

¼ ko 1 �
os

f

� �

:

ð71Þ

If T ¼ R; then we obtain (3) from (71). One of the logistic dynamic equations is (54). By tak-

ing (54) into account and using the definition of minus circle, we get

LD ¼
p � f1L

1þ mf1L

� �

x:

This implies that

LD þ mLDf1L ¼ ðp � f1LÞL:

By the simple useful formula, we have

LD þ ðLs � LÞf1L ¼ ðp � f1LÞL:

Solving the above equation for LΔ, we get

LD ¼ ðp � f1LsÞL

¼ pL 1 �
f1
p
Ls

� �

:
ð72Þ

If we take L = ω, p = k and
f1
p ¼

1

f in (72), then we obtain Eq (71).

At this point the following question arises: Is it possible to find an alternative 4-parameter

logistic dynamic equation which turns out to be the equivalent form of the 3-parameter logistic

dynamic equation? To find the answer of this question consider Eq (65) where ek is replaced
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by esk in the last two terms of Eq (65). Then we obtain that

oD ¼ � kðoþ moDÞ þ kf �
kfb

bþ f
f � s � b
� �

ekðt; 0Þ
� �

bþ f
f � s � b
� �

eskðt; 0Þ
� �

þ
kfb

bþ f
f � s � b
� �

eskðt; 0Þ
�

kfb

bþ f
f � s � b
� �

eskðt; 0Þ
:

ð73Þ

Solving the above equation for ωΔ yields

oDð1þ kmÞ ¼ � koþ kf þ kb

bþ f
f � s� b

� �
esk ðt;0Þ

o �
kfb

bþ f
f � s� b

� �
esk ðt;0Þ

;

or

oD ¼ � ko

1 � b

bþ f
f � s� b

� �
esk ðt;0Þ

1þ km

2

6
6
4

3

7
7
5þ

kf � kfb

bþ f
f � s� b

� �
esk ðt;0Þ

1þ km

¼ ð�kÞo 1 �
b

bþ f
f � s � b
� �

eskðt; 0Þ

2

4

3

5 � f ð�kÞ 1 �
b

bþ f
f � s � b
� �

eskðt; 0Þ

2

4

3

5:

Hence, we get the following logistic dynamic equation

oD ¼ ð�kÞqo � f ð�kÞq; t 2 T; ð74Þ

where

qðtÞ ¼ 1 � b

bþ f
f � s� b

� �
esk ðt;0Þ

; t 2 T:
ð75Þ

Theorem 0.20. Let k, f, s be positive constants and q be taken as in (75). Then, Eq (74) with
the initial condition (68) has the solution

o ¼ ðs � f Þeð�kÞqðt; 0Þ þ f ; t 2 T: ð76Þ

Proof. By using the definition of minus circle (6), we have

1þ m½�ðð�kÞqÞ� ¼ 1þ m �
� kq

1þ mk

� �

¼ 1þ m
kq

1þ mk � mkq

¼
1þ mk

1þ mk � mkq
:

ð77Þ

By using Theorem 0.2 and the properties of exponential functions given Theorem 0.1, we

PLOS ONE Gompertz and logistic dynamic equations

PLOS ONE | https://doi.org/10.1371/journal.pone.0230582 April 9, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0230582


arrive at the unique solution as follows:

oðtÞ ¼ seð�kÞqðt; 0Þ � f
Z t

0

eð�kÞqðt; sðtÞÞð�kÞqðtÞDt

¼ seð�kÞqðt; 0Þ � feð�kÞqðt; 0Þ
Z t

0

e�ðð�kÞqÞðsðtÞ; 0Þð�kÞqðtÞDt

¼ seð�kÞqðt; 0Þ

� feð�kÞqðt; 0Þ
Z t

0

e�ðð�kÞqÞðt; 0Þ 1þ m tð Þ � �kð Þq tð Þð Þ½ �
� kqðtÞ

1þ mðtÞk
Dt

¼ seð�kÞqðt; 0Þ

þfeð�kÞqðt; 0Þ
Z t

0

e�ðð�kÞqÞðt; 0Þ
1þ mðtÞk

1þ mðtÞk � mðtÞkqðtÞ
kqðtÞ

1þ mðtÞk
Dt

¼ seð�kÞqðt; 0Þ þ feð�kÞqðt; 0Þ
Z t

0

e�ðð�kÞqÞðt; 0Þ � ðð�kÞqðtÞÞDt

¼ seð�kÞqðt; 0Þ þ f ð1 � eð�kÞqðt; 0ÞÞ

¼ ðs � f Þeð�kÞqðt; 0Þ þ f ; t 2 T;

which completes the proof.

Example 0.21. If T ¼ Z; then the solution in (76) turns out to be

wðtÞ ¼ f þ ðs � f Þ
Yt� 1

t¼0

1þ
k

kþ 1

b

bþ f
f � s � b
� �

ð1þ kÞtþ1
� 1

0

@

1

A

2

4

3

5: ð78Þ

If we take b = 1 in (75), then we get q ¼ os

f : Then Eq (74) turns out to be

oD ¼
�k
f
osðo � f Þ: ð79Þ

Furthermore, if T ¼ R; (79) turns out to be the logistic differential Eq (3). Note that logistic

dynamic Eq (79) is equal neither (53) nor (54). Therefore, (78) with b = 1 is different than (60)

and (61). It means that obtaining 3-parameter logistic curves from 4-parameter logistic curves

yields new 3-parameter logistic discrete curves. The following example consists of two new

3-parameter logistic discrete curves.

Example 0.22. If we let T ¼ Z and b = 1 in (70) and (78), then we obtain

wðtÞ ¼ f þ ðs � f Þ
1

Qt� 1

t¼0
1þ k �

1

1þ
f

f � s � 1
� �

ð1þ kÞt
þ 1

0

@

1

A

2

4

3

5

;

ð80Þ

and

wðtÞ ¼ f þ ðs � f Þ
Yt� 1

t¼0

1þ
k

kþ 1

1

1þ
f

f � s � 1
� �

ð1þ kÞtþ1
� 1

0

@

1

A

2

4

3

5; ð81Þ

respectively.
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Goodness-of-fit test for gompertz and logistic curves and

conclusion

The main aim of this study for the statistical analysis of Gompertz and Logistic curves is to

determine whether their equations are able to model Pseudomonas Putita and tumor data sets

given in [10] and [11]. In order to achieve our goal, p-values of the parameters, adjusted R-

squared values and six types of errors, namely, RMSE (root mean square error), RRMSE (Rela-

tive Root Mean Square Error), MAPE (Mean Absolute Percent Error), MAE (mean absolute

error), U1 (Theil inequality coefficient, Theil’s U1), U2 (Theil inequality coefficient, Theil’s

U2) for each data set calculated, where

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

e2
t

T

r

; RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1
j
et
yt
j
2

T

v
u
u
t

; MAE ¼
PT

t¼1
jetj

T

MAPE ¼

PT
t¼1

jetj
yt

T
; U1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

e2
t

T

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

y2
t

T

r

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

ŷ2
t

T

r ; U2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

e2
t

T

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

y2
t

T

r

Here, et shows the error component, yt the original time series values, ŷt the estimated val-

ues of the time series, and T the number of observations of the series. The criteria to determine

an equation showing better performance in terms of goodness of fit is to have statistically sig-

nificant coefficients; in other words, meaningful p-values for each coefficient, the larger

adjusted R-squared value and smaller errors (see S1 and S2 Figs). The coefficient estimates of

these models are obtained by the Mathematica 11.0 and the Wolfram Language uses “Conjuga-

teGradient”, “Gradient”, “LevenbergMarquardt”, “Newton”, “NMinimize”, and “QuasiNew-

ton” methods.

The curves which successfully model Pseudomonas putita data are 4-parameter first type

continuous Gompertz curve (18), 3-parameter first type Gompertz curves (26), (27), (29),

Zwietering modification of continuous Gompertz curve (31), Gompertz-Liard curves (35),

(38), and 2-parameter second type Gompertz curves 49α0, 50α0, 51α0 and 52α0 that are

obtained from (49), (50), (51), (52) with t0 = 1 and α = 0. According to the results in S1 Fig Eq

(18) has the best fit among Gompertz curves. Therefore, we observe that the performance of

4-parameter Gompertz curves for bacteria is better than 3 and 2-parameter Gompertz growth

curves. In addition to these, Eqs (27), (29) and (38) are the 3- parameter discrete Gompertz

growth curves are new, thus, contribute to the literature.

When we concentrate attention on the Logistic type growth curves, from S1 Fig, it is appar-

ent that all of the Logistic type equations are successful in modeling the bacteria data set. In

addition, growth curves (70), (78), (80), (81) are the new 4-parameter discrete Logistic curves

that are obtained in this study. According the results in S1 Fig, among the Logistic type growth

curves, 4-parameter Logistic growth curves are better in modeling when it is compared with 3-

parameter ones.

Moreover, we can infer that the 4-parameter continuous Logistic curve (63) and (70), (78)

model better than Eq (18). Thus, Pseudomonas Putita data is modeled by Logistic type equa-

tions better than Gompertz type equations. In addition, Eq (63) highlighted with orange, (70)

and (78) highlighted with green in S1 Fig, have the smallest errors among the other Logistic

equations. Eqs (70) and (78) have smaller errors after the eighth decimal when they are com-

pared with Eq (63) highlighted yellow in S1 Fig. Therefore, new discrete growth curves (70)

and (78) are the best in modeling bacteria data.
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Eq (29) highlighted with yellow, (35) highlighted with green, 49α0, 50α0, 51α0 and 52α0

highlighted with orange in S2 Fig are the curves that successfully model the tumor data among

the Gompertz curves. Eq (35) has the best fit in modeling based on S2 Fig. This equation is the

Gompertz Liard continuous equation that was developed for tumor modeling in the literature,

so our result is compatible with the one in [14]. On the other hand, 3-parameter discrete Gom-

pertz growth curve (29) also models the tumor data set and this equation is developed in this

study as well. In addition, 4-parameter continuous and discrete second type Gompertz curves

(51) and (52) are also new. 2-parameter version 51a0 of (51) was studied in [8] as Mirror Gom-

pertz curve. Nevertheless, its discrete version 52α0 is a new contribution to the literature. At

this point, we declare that 3-parameter Gompertz curves are more successful in modeling

tumor data than 4-parameter Gompertz curves. Although the errors of the Logistic type curves

are smaller than the errors of Gompertz type curves, all of their parameters are not statistically

significant. Therefore, the Gompertz-Liard curve (35) is the best curve in modeling when it is

compared with all the other curves and so one can say that Gompertz type curves have better

fitting than Logistic type curves for tumor data.

As a result, Logistic curves are better in modeling bacteria data whereas tumor data is mod-

eled better by Gompertz curves. Increasing the number of parameters of Logistic curves give

favorable results for bacteria data while decreasing the number of the parameters of Gompertz

curves for tumor data turns out to be reasonable. S3 Fig gives us the curve fittings of 4-parame-

ter discrete Logistic curve (70) and 3-parameter discrete Gompertz curve (29) for bacteria data

set and also shows the importance of the number of parameters.

Supporting information

S1 Fig. Bacteria. Fitted parameters and statistical error analysis for bacteria. �: significant at.10

level, ��: significant at.05 level and ���: significant at.01 level.

(PNG)

S2 Fig. Tumor. Fitted parameters and statistical error analysis for tumor data. �: significant

at.10 level, ��: significant at.05 level and ���: significant at.01 level.

(PNG)

S3 Fig. Compare. Compare with 4-parameter discrete Logistic curve and 3-parameter discrete

Gompertz curve for bacteria data set.

(PDF)

S1 File. Bacteria. Data set for bacteria.

(PDF)

S2 File. Tumor. Data set for tumor.

(PDF)
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