
Mediterr. J. Math.  (2018) 15:200 

https://doi.org/10.1007/s00009-018-1244-3
c© Springer Nature Switzerland AG 2018

Oscillation Criteria for Four-Dimensional
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Abstract. In this paper, we obtain oscillation and nonoscillation criteria
for solutions to four-dimensional systems of first-order dynamic equa-
tions on time scales. Especially, we are interested in the conditions which
insure that every solution is oscillatory in the sub-linear, half-linear, and
super-linear cases. Our approach is based on the sign of the components
of nonoscillatory solutions. Several examples are included to highlight
our main results.
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1. Introduction

We investigate four-dimensional dynamic systems of the form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xΔ(t) = a(t)yα(t)
yΔ(t) = b(t)zβ(t)
zΔ(t) = c(t)wγ(t)
wΔ(t) = −d(t)xλ(σ(t))

(1.1)

on a time scale T, i.e., a closed subset of real numbers, where the coeffi-
cient functions a, b, c, d ∈ Crd ([t0,∞)T, (0,∞)) and α, β, γ, λ are the ratios
of odd positive integers. Here, Crd is the set of rd-continuous functions and
[t0,∞)T := [t0,∞) ∩ T. Throughout this paper, we assume

∫ ∞

t0

a(t)Δt =
∫ ∞

t0

b(t)Δt =
∫ ∞

t0

c(t)Δt = ∞ (1.2)

and consider time scales unbounded. By a solution (x, y, z, w) of system (1.1),
we mean that functions x, y, z, w are delta-differentiable, their first delta-
derivatives are rd-continuous, and satisfy system (1.1) for all t ≥ t0. We
call (x, y, z, w) a proper solution if it is defined on [t0,∞)T and for t ≥ t0,
sup{|x(s)|, |y(s)|, |z(s)|, |w(s)| : s ∈ [t,∞)T} > 0. A solution (x, y, z, w) of
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system (1.1) is said to be oscillatory if all of its components x, y, z, w are oscil-
latory, i.e., neither eventually positive nor eventually negative. Otherwise, it
is said to be nonoscillatory. Obviously, if one component of a solution of sys-
tem (1.1) is eventually of one sign, then all its components are eventually of
one sign and so nonoscillatory solutions have all components nonoscillatory.
We are also interested in system (1.1) in the sub-linear case, half-linear case,
and super-linear case, that is, when αβγλ < 1, αβγλ = 1, and αβγλ > 1,
respectively.

Motivated by [5,6], we establish some oscillation results for system (1.1)
on time scales. In the next section, we present some auxiliary lemmas which
are needed in the proof of our results and we consider two types of nonoscil-
latory solutions: one type when all components have the same sign and the
other type when the third component has a different sign. In the following
sections, we consider the properties of these types including the asymptotic
behaviors. Our approach is based on the integral conditions of the coefficient
functions a, b, c and d with the products of α, β, γ, λ. We also illustrate the
results by examples. Finally, we introduce the conditions which insure that
every solution of system (1.1) is oscillatory in the sub-linear, half-linear and
super-linear cases.

2. Preliminary Results

We only include preliminary results in this section. Nevertheless, we suggest
readers the books by Bohner and Peterson [3,4] for an introduction to time-
scale calculus.

The following lemma is essential to establish our main theorems for the
sub-linear, half-linear and super-linear cases. Its proof follows from the chain
rule on a time scale, see [1].

Lemma 2.1. Let x ∈ Crd (T,R+).

(i) If 0 < η < 1 and xΔ(t) < 0 on T, then
∫ ∞

T

−xΔ(t)
xη(t)

Δt < ∞, T ∈ T.

(ii) If η > 1 and xΔ(t) > 0 on T, then
∫ ∞

T

xΔ(t)
xη(σ(t))

Δt < ∞, T ∈ T.

Using the sign of the components, one can observe the following: let
(x, y, z, w) be a nonoscillatory solution of system (1.1). Without loss of gen-
erality, assume that x(t) > 0 for t ≥ t0, t0 ∈ T. From the fourth equation
of system (1.1), w is strictly decreasing. Hence, it is of one sign. Continu-
ing by the same argument, we get z and y are monotone and of one sign
for large t too. The remaining cases when any of the components y, z, w are
eventually positive or negative are proved similarly. Therefore, if one of the
components of a solution (x, y, z, w) is eventually of one sign, then all of its
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components are eventually of one sign. In other words, any nonoscillatory
solution of system (1.1) has all components nonoscillatory.

The next lemma shows that any nonoscillatory solution (x, y, z, w) of
system (1.1) has two types when (1.2) holds.

Lemma 2.2. Any nonoscillatory solution (x, y, z, w) of system (1.1) such that
x(t) > 0 for large t ∈ T is one of the following types:

Type (a) : x > 0, y > 0, z > 0, w > 0 eventually
Type (b) : x > 0, y > 0, z < 0, w > 0 eventually.

Proof. Let (x, y, z, w) be a nonoscillatory solution of system (1.1). Without
loss of generality, assume that x(t) > 0 for t ≥ T , T ∈ T. Then we first
assume that there exists a solution such that y(t) > 0, z(t) < 0, and w(t) < 0
for t ≥ T . The negativity of w and the third equation of system (1.1) show
that z(t) is nonincreasing for t ≥ T . Therefore, there exist t0 ≥ T , t0 ∈ T

and k > 0 such that z(t) ≤ −k for t ≥ t0. Plugging this inequality in the
integration of the second equation from t0 to t we get

y(t) − y(t0) ≤ −kβ

∫ t

t0

b(s)Δs, t ≥ t0.

Then y(t) → −∞ as t → ∞, but this contradicts the fact that y(t) > 0 for
large t. The case when y(t) < 0, z(t) > 0, and w(t) > 0 is similar and hence is
eliminated. Now assume that there exists a nonoscillatory solution of system
(1.1) such that y(t) < 0, z(t) < 0 for t ≥ T . The negativity of z and the
second equation of system (1.1) yield y(t) is nonincreasing for t ≥ T . Hence,
there exist t0 ≥ T , t0 ∈ T and l > 0 such that y(t) ≤ −l for t ≥ t0. Plugging
this inequality in the integration of the first equation from t0 to t yields

x(t) − x(t0) ≤ −lα
∫ t

t0

a(s)Δs, t ≥ t0.

Then x(t) → −∞ as t → ∞, but this contradicts the fact that x(t) > 0
for large t. Next, assume that there exists a nonoscillatory solution of system
(1.1) such that z(t) > 0, w(t) < 0 for t ≥ T . The positivity of x and the fourth
equation of system (1.1) yield w(t) which is nonincreasing for t ≥ T . Hence,
there exist t0 ≥ T , t0 ∈ T and m > 0 such that w(t) ≤ −m for t ≥ t0. Using
this inequality and integrating the third equation from t0 to t, we get

z(t) − z(t0) ≤ −mγ

∫ t

t0

c(s)Δs, t ≥ t0.

Then z(t) → −∞ as t → ∞, but this contradicts the assumption z(t) > 0
for large t. �

To show that system (1.1) is oscillatory, we first try the divergence of
the single integral of d.

Lemma 2.3. System (1.1) is oscillatory if
∫ ∞

t0

d(t)Δt = ∞. (2.1)
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Proof. By Lemma 2.2, any nonoscillatory solution of system (1.1) is either
Type (a) or Type (b). Let (x, y, z, w) be of a Type (a) solution of system
(1.1) such that x(t) > 0 for t ≥ T . The positivity of y and the first equation
of system (1.1) show that x(t) is nondecreasing for t ≥ T . Therefore, there
exist t0 ≥ T , t0 ∈ T and k > 0 such that x(t) ≥ k for t ≥ t0. Then using this
inequality and the integration of the fourth equation from t0 to t give us

w(t) ≤ −kλ

∫ t

t0

d(s)Δs, t ≥ t0.

As t → ∞, w(t) → −∞ by (2.1). But, this is a contradiction because of the
assumption w(t) > 0 for large t. The discussion above is also valid for Type
(b) solutions because the sign of z is not needed in this proof. Therefore,
system (1.1) does not have any nonoscillatory solutions and so the proof is
completed. �

Now as a result of the discussion above, from now on we will assume
that ∫ ∞

t0

d(t)Δt < ∞. (2.2)

3. Type (a) Solutions

In this section, we investigate not only nonoscillatory criteria, but also the
asymptotic behavior of Type (a) solutions. The following property of Type
(a) solutions in the discrete case can be found in [7].

Proposition 3.1. Every solution (x, y, z, w) of Type (a) of system (1.1) satis-
fies

I

(∫ ∞

t

d(s)Δs

)γβα

≤ x1−λγβα(σ(t)), (3.1)

where t ∈ T is sufficiently large and

I =
∫ t

t0

a(s)

(∫ s

t0

b(r)
(∫ r

t0

c(η)Δη

)β

Δr

)α

Δs. (3.2)

Proof. Let (x, y, z, w) be of a Type (a) solution of system (1.1) such that
x(t) > 0 for t ≥ T . Then integrating the third equation from t0 to t yields

z(t) ≥
∫ t

t0

c(s)wγ(s)Δs, t ≥ t0. (3.3)

Since w(t) is nonincreasing for t ≥ T , (3.3) yields

zβ(t) ≥ wγβ(t)
(∫ t

t0

c(s)Δs

)β

, t ≥ t0.

Now integrating the second equation of system (1.1) from t0 to t and
plugging the above inequality into the resulting inequality yield

yα(t) ≥ wγβα(t)

(∫ t

t0

b(s)
(∫ s

t0

c(r)Δr

)β

Δs

)α

, t ≥ t0, (3.4)
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where we use the monotonicity of w. Integrating the first equation of system
(1.1) from t0 to t and substituting (3.4) in the resulting integration give us

x(σ(t)) ≥ wγβα(t)I, (3.5)

where we use the monotonicities of x and w, and I is defined as in (3.2).
Integrating the fourth equation of system (1.1) from t to ∞ and using the
monotonicity of x yield

w(t) ≥
∫ ∞

t

d(s)xλ(σ(s))Δs ≥ xλ(σ(t))
∫ ∞

t

d(s)Δs (3.6)

and this implies

wγβα(t) ≥ xλγβα(σ(t))
(∫ ∞

t

d(s)Δs

)γβα

. (3.7)

Therefore, from (3.5) and (3.7) we have

x(σ(t)) ≥ Ixλγβα(σ(t))
(∫ ∞

t

d(s)Δs

)γβα

which proves the desired result (3.1). �

Theorem 3.1. Every nonoscillatory solution of system (1.1) is of Type (a) if
any of the following conditions holds:

(i)
∫ ∞

t0

c(t)
(∫ ∞

t

d(s)Δs

)γ

Δt = ∞;

(ii)
∫ ∞

t0

b(t)
(∫ ∞

t

c(r)
(∫ ∞

r

d(τ)Δτ

)γ

Δr

)β

Δs = ∞;

(iii) αβγλ < 1, and
∫ ∞

t0

b(t)
(∫ t

t0

a(s)Δs

)λγβ (∫ ∞

t

c(r)
(∫ ∞

r

d(τ)Δτ

)γ

Δr

)β

Δt = ∞;

(iv) λγβα > 1, and
∫ ∞

t0

a(t)

(∫ ∞

σ(t)

b(s)
(∫ ∞

s

c(r)
(∫ ∞

r

d(η)Δη

)γ

Δr

)β

Δs

)α

Δt = ∞.

Proof. Since (1.2) holds, every nonoscillatory solution of system (1.1) is of
either Type (a) or Type (b) by Lemma 2.2. Assume that (x, y, z, w) is of a
Type (b) solution of system (1.1) such that x(t) > 0 for t ≥ T .

Assume (i) holds. Since the monotonicities and the signs of x and w are
same for both types, (3.6) holds not only for Type (a) solutions but also for
Type (b) solutions of system (1.1). Substituting (3.6) in the integration of
the third equation from t0 to t yields

− z(t0) ≥ xλγ(t0)
∫ t

t0

c(s)
(∫ ∞

s

d(r)Δr

)γ

Δs, t ≥ t0 (3.8)

following from the monotonicity of x. As t → ∞, the right-hand side of
(3.8) approaches to ∞ by (i), but then this contradicts the boundedness of
z. Therefore, (x, y, z, w) is of Type (a) solution.



 200 Page 6 of 15 E. Akın and G. Yeni MJOM

Assume that (ii) holds. Since w is positive, from the third equation of
system (1.1) we have that z(t) is nondecreasing for t ≥ T . Therefore, by
integrating the third equation of system (1.1) from t to ∞ and using the
inequality (3.6), we have

− z(t) ≥ xλγ(t)
∫ ∞

t

c(s)
(∫ ∞

s

d(r)Δr

)γ

Δs, t ≥ t0, (3.9)

where we use the monotonicity of x. The negativity of z and the second
equation of system (1.1) give us that y(t) is nonincreasing for t ≥ T . There-
fore, integrating the second equation from t0 to t and plugging (3.9) into the
resulting integration yield

y(t0) ≥ xλγβ(t0)
∫ t

t0

b(s)
(∫ ∞

s

c(r)
(∫ ∞

r

d(τ)Δτ

)γ

Δr

)β

Δs. (3.10)

As t → ∞, the right-hand side of the inequality (3.10) approaches to ∞ by
(ii). On the other hand, this contradicts the boundedness of y. Hence, we
have shown that (x, y, z, w) is of Type (a) solution.

Assume that (iii) holds. By integrating the first equation of system (1.1)
from t0 to t and using the monotonicity of y, we get

x(t) ≥
∫ t

t0

a(s)yα(s)Δs (3.11)

≥ yα(t)
∫ t

t0

a(s)Δs, t ≥ t0. (3.12)

Substituting (3.9) in the second equation of system (1.1) yields for t ≥ t0

− yΔ(t) = b(t)(−zβ(t)) ≥ xλγβ(t)b(t)
(∫ ∞

t

c(s)
(∫ ∞

s

d(r)Δr

)γ

Δs

)β

.

Finally, substituting (3.12) in the above inequality gives us

− yΔ(t) ≥ b(t)yλγβα(t)
(∫ t

t0

a(s)Δs

)λγβ (∫ ∞

t

c(s)
(∫ ∞

s

d(r)Δr

)γ

Δs

)β

.

Dividing both sides of the inequality above by yλγβα and integrating both
sides of the resulting inequality from t0 to t yield

∫ t

t0

− yΔ(s)
yλγβα(s)

Δs

≥
∫ t

t0

b(s)
(∫ s

t0

a(η)Δη

)λγβ (∫ ∞

s

c(r)
(∫ ∞

r

d(τ)Δτ

)γ

Δr

)β

Δs.

As t → ∞,
∫ ∞

t0
− yΔ(s)

yλγβα(s)
Δs = ∞ by (iii). However,

∫ ∞
t0

− yΔ(s)
yλγβα(s)

Δs < ∞
by Lemma 2.1 (i) so this gives a contradiction and completes the proof.
Therefore, (x, y, z, w) is of Type (a) solution.
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Assume that (iv) holds. Integrating the second equation of system (1.1)
from σ(t) to ∞ and the monotonicity of y yield

y(t) ≥ y(σ(t)) ≥
∫ ∞

σ(t)

b(s)(−zβ(s))Δs. (3.13)

Substituting (3.9) and (3.13) gives

y(t) ≥ xλγβ(σ(t))
∫ ∞

σ(t)

b(s)
(∫ ∞

s

c(r)
(∫ ∞

r

d(τ)Δτ

)γ

Δr

)β

Δs, (3.14)

where we use the monotonicity of x. Now after plugging (3.14) into the
first equation system (1.1), dividing both sides of the resulting inequality
by xλγβα(σ(t)) and then integrating from t0 to t, we obtain

∫ t

t0

xΔ(s)
xλγβα(σ(s))

Δs

≥
∫ t

t0

a(s)

(∫ ∞

σ(s)

b(r)
(∫ ∞

r

c(τ)
(∫ ∞

τ

d(η)Δη

)γ

Δτ

)β

Δr

)α

Δs.

As t → ∞,
∫ ∞

t0

xΔ(s)
xλγβα(s)

Δs = ∞ by (iv). However,
∫ ∞

t0

xΔ(t)
xλγβα(σ(t))

Δt < ∞ by
Lemma 2.1 (ii). So this gives a contradiction and shows that (x, y, z, w) has
to be of Type (a) solution of system (1.1). �

Since
∫ ∞

t0
d(t)Δt < ∞, we have

∫ ∞

t0

c(t)
(∫ ∞

t

d(s)Δs

)

Δt =
∫ ∞

t0

d(t)

(∫ σ(t)

t0

c(s)Δs

)

Δt,

see [2]. Therefore, in the special case of γ = 1 in part (i) of Theorem 3.1, we
get the following nonoscillation criteria.

Remark 3.1. If
∫ ∞

t0

d(t)

(∫ σ(t)

t0

c(s)Δs

)

Δt = ∞, then every nonoscillatory

solution of system (1.1) is of Type (a).

Finding an integral condition for Type (a) solutions when λγβα = 1 is
still open for discussion. Nevertheless, we have the following corollary.

Corollary 3.1. Every nonoscillatory solution of system (1.1) is of Type (a) if
λγβα = 1 and

lim sup
t→∞

(∫ ∞

σ(t)

b(s)
(∫ ∞

s

c(r)
(∫ ∞

r

d(η)Δη

)γ

Δr

)β

Δs

)α (∫ t

t0

a(s)Δs

)

>1.

(3.15)

Proof. Let αβγλ = 1. Since (1.2) holds, every nonoscillatory solution of sys-
tem (1.1) is of either Type (a) or Type (b) by Lemma 2.2. Assume (3.15) holds
and (x, y, z, w) is of a Type (b) solution of system (1.1) such that x(t) > 0
for t ≥ T . Then (3.12) and (3.14) hold. Plugging (3.14) into (3.12) yields
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x(t) ≥ xλγβα(σ(t))

(∫ ∞

σ(t)

b(s)

(∫ ∞

s

c(r)

(∫ ∞

r

d(τ)Δτ

)γ

Δr

)β

Δs

)α ∫ t

t0

a(s)Δs.

(3.16)

Hence, after dividing the inequality above by xλγβα(σ(t)) and taking the
lim sup of the resulting inequality, we get

lim sup
t→∞

(∫ ∞

σ(t)

b(s)
(∫ ∞

s

c(r)
(∫ ∞

r

d(η)Δη

)γ

Δr

)β

Δs

)α (∫ t

t0

a(s)Δs

)

≤ 1

which contradicts (3.15). Therefore, (x, y, z, w) is of a Type (a) solution of
(1.1). �

Remark 3.2. Any Type (a) solution (x, y, z, w) of system (1.1) satisfies the
following:

(i) lim
t→∞ x(t) = ∞;

(ii) lim
t→∞ y(t) = ∞.

Proof. Let (x, y, z, w) be of a Type (a) solution of system (1.1) such that
x(t) > 0 for t ≥ T . Since z is positive, from the second equation of system
(1.1) we have that y(t) is nondecreasing for t ≥ T . Hence, there exist t0 ≥ T ,
t0 ∈ T and k > 0 such that y(t) ≥ k for t ≥ t0. Then (3.11) holds. This
implies that

x(t) ≥ kα

∫ t

t0

a(s)Δs, t ≥ t0. (3.17)

As t → ∞, we get lim
t→∞ x(t) = ∞.

Now since w is positive, from the third equation of system (1.1) we have
that z(t) is nondecreasing for t ≥ T . Hence, there exist t0 ≥ T , t0 ∈ T and
k > 0 such that z(t) ≥ k for t ≥ t0. Integrating the second equation from
t0 to t and using this inequality give us

y(t) ≥
∫ t

t0

b(s)zβ(s)Δs (3.18)

≥ kβ

∫ t

t0

b(s)Δs, t ≥ t0. (3.19)

As t → ∞, we have lim
t→∞ y(t) = ∞. �

Let us consider the following example to illustrate Theorem 3.1.

Example 3.1. Let T = Z and t0 = 1. Consider the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δxn = 19.3n

2n+3 yn

Δyn = 5.3
9n
5

22n+2 z
1
5
n

Δzn = 2n+1

31−n wn

Δwn = − 1
3n x

1
3
n+1 .

(3.20)
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Then
∫ ∞

1

a(t)Δt = lim
T→∞

T−1∑

n=1

19.3n

2n+3
=

∞∑

n=1

19.3n

2n+3
=

19
8

∞∑

n=1

(
3
2

)n

= ∞ by

geometric series. Similarly,
∫ ∞

1

b(t)Δt =
∫ ∞

1

c(t)Δt = ∞, and
∫ ∞

1

d(t)Δt <

∞. Furthermore,
∫ ∞

1

c(t)
(∫ ∞

t

d(s)Δs

)

Δt = lim
T→∞

T−1∑

n=1

cn

( ∞∑

k=n

dn

)

=
∞∑

n=1

2n+1

31−n

( ∞∑

k=n

1
3k

)

=
2
3

∞∑

n=1

6n

( ∞∑

k=n

1
3k

)

=
2
3

∞∑

n=1

6n 1
3n

3
2

=
∞∑

n=1

2n

= ∞.

Therefore, every nonoscillatory solution of system (3.20) is of Type (a) by
Theorem 3.1 (i). In fact, one can also show that

((
3
2

)3n
,
(

3
2

)2n
, 3n, 3

2n

)
is of

a Type (a) solution of (3.20).

4. Type (b) Solutions

The following property of Type (b) solutions in the discrete case is shown by
Došlá and Krejčová in [7] and its proof follows from (3.16) immediately.

Proposition 4.1. Every solution (x, y, z, w) of Type (b) of system (1.1) satis-
fies

Jα

∫ t

t0

a(s)Δs ≤ x(t)
xλγβα(σ(t))

,

where t ∈ T is sufficiently large and

J =
∫ ∞

σ(t)

b(s)
(∫ ∞

s

c(r)
(∫ ∞

r

d(η)Δη

)γ

Δr

)β

Δs.

Theorem 4.1. Every nonoscillatory solution of system (1.1) is of a Type (b)
solution if any of the following conditions holds:

(i)
∫ ∞

t0

d(t)
(∫ t

t0

a(s)Δs

)λ

Δt = ∞;

(ii)
∫ ∞

t0

d(t)
(∫ t

t0

a(s)
(∫ s

t0

b(r)Δr

)α

Δs

)λ

Δt = ∞;

(iii) αβγλ < 1 and
∫ ∞

t0

d(t)

(∫ t

t0

a(s)

(∫ s

t0

b(r)
(∫ r

t0

c(τ)Δτ

)β

Δr

)α

Δs

)λ

Δt = ∞;

(iv) αβγλ = 1 and 0 < ε < 1
∫ ∞

t0

d(t)

(∫ t

t0

a(s)

(∫ s

t0

b(r)
(∫ r

t0

c(τ)Δτ

)β

Δr

)α

Δs

)λ(1−ε)

Δt = ∞;
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(v) αβγλ > 1 and
∫ ∞

t0

a(t)

(∫ t

t0

b(s)
(∫ s

t0

c(τ)Δτ

)β

Δs

)α (∫ ∞

σ(t)

d(η)Δη

)γβα

Δt = ∞.

Proof. Since (1.2) holds, every nonoscillatory solution of system (1.1) is of
either Type (a) or Type (b) by Lemma 2.2. Assume that (x, y, z, w) is a Type
(a) solution of system (1.1) such that x(t) > 0 for t ≥ T .

Assume that (i) holds. Then (3.17) holds. Now integrating the fourth
equation of system (1.1) from t0 to t and plugging (3.17) into the resulting
integration yield for t ≥ t0,

w(t) − w(t0) = −
∫ t

t0

d(s)xλ(σ(s))Δs ≤ −kα

∫ t

t0

d(s)
(∫ s

t0

a(r)Δr

)λ

Δs

following from the monotonicity of x. Then as t → ∞, w(t) → −∞ by (i).
But this contradicts the boundedness of w. Therefore, (x, y, z, w) is of a Type
(b) solution of system (1.1).

Assume that (ii) holds. After integrating the first equation from t0 to t
and using (3.19), we obtain

xλ(σ(t)) ≥ kαβλ

(∫ t

t0

a(s)
(∫ s

t0

b(r)Δr

)α

Δs

)λ

, t ≥ t0. (4.1)

Integrating the fourth equation of system (1.1) from t0 to t and plugging
(4.1) into it, one can get

w(t) − w(t0) ≤ −kαβλ

∫ t

t0

d(s)
(∫ s

t0

a(r)
(∫ r

t0

b(τ)Δτ

)α

Δr

)λ

Δs, t ≥ t0.

(4.2)
As t → ∞, the right-hand side of (4.2) approaches to −∞ by (ii). Therefore,
w(t) → −∞. However, this contradicts the boundedness of w and completes
the proof. Hence, (x, y, z, w) is of a Type (b) solution of system (1.1).

Assume that (iii) holds. Taking the λ power of (3.5) and then multi-
plying both sides of the inequality by −d give us the right-hand side of the
inequality of (3.5) being wΔ, as follows:

wΔ(t) ≤ −wγβαλ(t)d(t)

(∫ t

t0

a(s)

(∫ s

t0

b(r)
(∫ r

t0

c(η)Δη

)β

Δr

)α

Δs

)λ

.

Now dividing both sides of this inequality by −wγβαλ and integrating both
sides of the resulting inequality from t0 to t yield

∫ t

t0

− wΔ(s)
wγβαλ(s)

Δs

≥
∫ t

t0

d(s)

(∫ s

t0

a(r)

(∫ r

t0

b(τ)
(∫ τ

t0

c(η)Δη

)β

Δτ

)α

Δr

)λ

Δs.
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As t → ∞,
∫ ∞

t0
− wΔ(s)

wγβαλ(s)
Δs = ∞ by (iii). However,

∫ ∞
t0

− wΔ(s)
wγβαλ(s)

Δs < ∞
by Lemma 2.1 (i). So this gives a contradiction and hence (x, y, z, w) is of a
Type (b) solution of system (1.1).

Assume that (iv) holds. Taking the λ(1− ε) power of both sides of (3.5)
implies that

xλ(1−ε)(σ(t))≥w1−ε(t)

(∫ t

t0

a(s)

(∫ s

t0

b(r)
(∫ r

t0

c(η)Δη

)β

Δr

)α

Δs

)λ(1−ε)

.

(4.3)

Since x is nondecreasing, there exists k > 0 such that xλ(σ(t))≥ k for large t.
This yields

xλ(1−ε)(σ(t)) ≤ xλ(σ(t))
kε

for large t.

Now using the above inequality together with (4.3) and multiplying both
sides of the resulting inequality by d give us

− wΔ(t) ≥ kεw1−ε(t)d(t)

(∫ t

t0

a(s)

(∫ s

t0

b(r)

(∫ r

t0

a(η)Δη

)β

Δr

)α

Δs

)λ(1−ε)

.

Dividing this inequality by w1−ε and integrating both sides of the resulting
inequality from t0 to t yield

∫ t

t0

− wΔ(s)
w1−ε(s)

Δs

≥ kε

∫ t

t0

d(s)

(∫ s

t0

a(r)

(∫ r

t0

b(τ)
(∫ τ

t0

c(η)Δη

)β

Δτ

)α

Δr

)λ(1−ε)

Δs.

As t → ∞,
∫ ∞

t0
− wΔ(s)

w1−ε(s)Δs = ∞ by (iv). However, by Lemma 2.1 (i) we

obtain
∫ ∞

t0
− wΔ(s)

w1−ε(s)Δs < ∞, 0 < ε < 1. This gives a contradiction and hence
(x, y, z, w) is of a Type (b) solution of system (1.1).

Assume (v) holds. Integrating the fourth equation of system (1.1) from
σ(t) to ∞ and using the monotonicity of x give us

w(σ(t)) ≥ xλ(σ(t))
∫ ∞

σ(t)

d(s)Δs. (4.4)

After substituting (3.18) in the first equation of system (1.1) and then sub-
stituting (3.3) in the resulting inequality, we get

xΔ(t) ≥ a(t)
(∫ t

t0

b(s)zβ(s)Δs

)α

≥ a(t)

(∫ t

t0

b(s)
(∫ s

t0

c(r)wγ(r)Δr

)β

Δs

)α

, t ≥ t0.
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From the monotonicity of w, this inequality becomes

xΔ(t) ≥ wγβα(σ(t))a(t)

(∫ t

t0

b(s)
(∫ s

t0

c(r)Δr

)β

Δs

)α

, t ≥ t0. (4.5)

Now plugging (4.4) into (4.5), i.e.,

xΔ(t)

≥ xλγβα(σ(t))a(t)

(∫ t

t0

b(s)
(∫ s

t0

c(r)Δr

)β

Δs

)α (∫ ∞

σ(t)

d(s)Δs

)γβα

Δt,

then dividing both sides of the above inequality by xλγβα(σ(t)), and inte-
grating the resulting inequality from t0 to t yield

∫ t

t0

xΔ(s)
xλγβα(σ(s))

Δs

≥
∫ t

t0

a(s)

(∫ s

t0

b(r)
(∫ r

t0

c(τ)Δτ

)β

Δr

)α (∫ ∞

σ(s)

d(η)Δη

)γβα

Δs.

As t → ∞, we get
∫ ∞

t0

xΔ(t)
xλγβα(σ(t))

Δt = ∞ by (v). However, it contradicts
∫ ∞

t0

xΔ(t)
xλγβα(σ(t))

Δt < ∞ by Lemma 2.1 (ii). Therefore, (x, y, z, w) is of a

Type (b) solution of system (1.1). �

From changing the order of integration in part (i) of Theorem 4.1 when
λ = 1, we obtain

∫ t

t0

d(s)
(∫ s

t0

a(r)Δr

)

Δs =
∫ t

t0

a(s)

(∫ t

σ(s)

d(r)Δr

)

Δt,

see [2]. Therefore, we have the following result.

Remark 4.1. If
∫ ∞

t0

a(s)

(∫ ∞

σ(s)

d(r)Δr

)

Δs = ∞, then every nonoscillatory

solution of system (1.1) is of Type (b).

Remark 4.2. Any Type (b) solution (x, y, z, w) of (1) satisfies lim
t→∞ z(t)

= 0.

Proof. Let (x, y, z, w) be of a Type (b) solution of system (1.1) such that
x(t) > 0 for large t ∈ T. Then z is eventually negative increasing. Therefore,
lim

t→∞ z(t) = l ≤ 0. Suppose that l < 0, then from the monotonicity of z, we

have z(t) ≤ l for large t. Integrating the second of system (1.1) from t0 to t
yields

y(t) − y(t0) ≤ lβ
∫ t

t0

b(s)Δs, t ≥ t0.
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Letting t → ∞ implies lim
t→∞ y(t) = −∞. But, this contradicts the positivity

of y. Hence, lim
t→∞ z(t) = 0. �

Corollary 4.1. Every nonoscillatory solution of system (1.1) is of Type (b) if
αβγλ = 1 and

lim sup
t→∞

(∫ t

t0

a(s)

(∫ s

t0

b(r)

(∫ r

t0

c(τ)Δτ

)β

Δr

)α

Δs

) (∫ ∞

t

d(s)Δs

)γβα

> 1.

(4.6)

Proof. Since (1.2) holds, every nonoscillatory solution of system (1.1) is of
either Type (a) or Type (b) by Lemma 2.2. Assume (4.6) holds and (x, y, z, w)
is of a Type (a) solution of system (1.1) such that x(t) > 0 for t ≥ T . Let
αβγλ = 1. Then, by (3.1) we have

I

(∫ ∞

t

d(s)Δs

)γβα

≤ 1,

where I is given as in (3.2). Therefore,

lim sup
t→∞

I

(∫ ∞

t

d(s)Δs

)γβα

≤ 1

which contradicts (4.6). Therefore, (x, y, z, w) is of a Type (b) solution of
system (1.1). �

Example 4.1. We consider the quantum time scale T = qN0 = {qn : n ∈ N},
where q > 1, q ∈ R and let t0 = 1, s = qm, and t = qn for m,n ∈ N0 for the
system ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xΔ(t) = t3y3(t)
yΔ(t) = 1

q tz3(t)
zΔ(t) = 1

q t8w5(t)
wΔ(t) = − 1+q

q3t4 x(tq).

(4.7)

Then we have
∫ T

1

t3Δt =
∑

t∈[1,T )
qN0

t3t(q − 1) = (q − 1)
∑

t∈[1,T )
qN0

t4, and

so
∫ ∞

1

a(t)Δt = (q − 1)
∞∑

n=0

(q4)n = ∞. It can be shown similarly that

∫ ∞

1

b(t)Δt =
∫ ∞

1

c(t)Δt = ∞. Also,
∫ T

1

1 + q

q3t4
Δt =

(q2 − 1)
q3

∑

t∈[1,T )
qN0

1
t3

implies
∫ ∞
1

d(t)Δt = (q2−1)
q3

∑∞
n=0

1
(q3)n < ∞. Besides,

∫ T

1

1 + q

q3t4

(∫ t

1

s3Δs

)

Δt =
∑

t∈[1,T )
qN0

1 + q

q3t4

⎛

⎝
∑

s∈[1,t)
qN0

s4(q − 1)

⎞

⎠ (q − 1)t

=
(1 − q)

(1 + q2)q3

∑

t∈[1,T )
qN0

1
t3

(
1 − t4

)
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and so
∫ ∞

1

d(t)
(∫ t

1

a(s)Δs

)

Δt =
(1 − q)

(1 + q2)q3

∞∑

n=0

(
1

(q3)n
− qn

)

= ∞

by geometric series. This shows that every nonoscillatory solution of system
(4.7) is of a Type (b) by Theorem 4.1 (i). One can see that

(
t, 1

t ,− 1
t ,

1
t2

)
is a

nonoscillatory solution and hence it is of a Type (b) solution of system (4.7).

5. Conclusion

In this study, we present oscillation criteria for system (1.1). Condition (1.2)
guarantees that any nonoscillatory solution (x, y, z, w) of system (1.1) is either
of Type (a) or of Type (b), see Lemma 2.2. We show that system (1.1) is oscil-
latory when (2.1) holds. Then, we assume condition (2.2) instead of condition
(2.1) to find oscillation criteria for system (1.1). In addition to condition (1.2),
if (2.2) holds, Theorems 3.1 and 4.1 eliminate all Type (b) and Type (a) solu-
tions of system (1.1), respectively. To achieve our goal, we use the integral
conditions of the coefficient functions a, b, c and d and the product αβγλ.
Furthermore, this discussion gives us the following theorem.

Theorem 5.1. If one of the conditions of Theorem 3.1 and one of the condi-
tions of Theorem 4.1 are assumed, then system (1.1) is oscillatory.

We also observe that system (1.1) is oscillatory in the sub-linear, half-
linear and super-linear cases.

Corollary 5.1. System (1.1) satisfies the following:

(i) Assume Theorems 3.1 (iii) and 4.1 (iii) hold, then sub-linear system
(1.1) is oscillatory.

(ii) Assume Corollary 3.1 and Theorem 4.1 (iv) hold, then half-linear system
(1.1) is oscillatory.

(iii) Assume Theorems 3.1 (iv) and 4.1 (v) hold, then super-linear system
(1.1) is oscillatory.

Note that an integral condition for a Type (a) solution in the half-linear
system is still to be found.

As a consequence of our proofs, it is worth to mention that by the
monotonicity of the first component all the results we have gotten in this
study are also valid for the advanced system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xΔ(t) = a(t)yα(t)
yΔ(t) = b(t)zβ(t)
zΔ(t) = c(t)wγ(t)
wΔ(t) = −d(t)xλ(k(t)),
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where k(t) ≥ t, k ∈ Crd ([t0,∞)T, [t0,∞)T) and t ∈ T. At this point, one can
consider the delay system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xΔ(t) = a(t)yα(t)
yΔ(t) = b(t)zβ(t)
zΔ(t) = c(t)wγ(t)
wΔ(t) = −d(t)xλ(τ(t)),

where τ(t) ≤ t, lim
t→∞ τ(t) = ∞, and τ ∈ Crd ([t0,∞)T, [t0,∞)T). Therefore,

our question is now whether or not the same results are valid for the above
delay system when (1.2) holds.

Note that without assuming (1.2), there are six more types of nonoscil-
latory solutions of system (1.1). As a result of this study, we also would like
to find the oscillation conditions to eliminate other types.
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