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OSCILLATION CRITERIA FOR A CERTAIN CLASS OF SECOND ORDER
EMDEN-FOWLER DYNAMIC EQUATIONS *

ELVAN AKIN-BOHNERT, MARTIN BOHNER', AND SAMIR H. SAKER!

Abstract. By means of Riccati transformation techniques we estalsiishe oscillation criteria for the second
order Emden—Fowler dynamic equation on a time scale. Suchtieqs contain the classical Emden—Fowler equa-
tion as well as their discrete counterparts. The classisaillation results of Atkinson (in the superlinear case) an
Belohorec (in the sublinear case) are extended in this gagemden—Fowler dynamic equations on any time scale.
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1. Introduction. In this paper we shall consider the second order Emden—Falyle
namic equation

(1.1) (pr®)2(t) 4+ q(t)zY (o(t)) =0 for t € [a,b]

on a time scale, wheneandgq are positive, real-valued rd-continuous functions, arig an
odd positive integer. We shall also consider the two cases

(1.2) /t I% =0
and

AL
(13) /to m < OQ.

In the case ofy > 1, (1.1) is the prototype of a wide class of nonlinear dynamic eaunegti
called Emden—Fowler superlinear dynamic equations, afd<if v < 1, then (.1) is the
prototype of dynamic equations called Emden—Fowler sehlimlynamic equations. Itis in-
teresting to studyl(.1) because the continuous version, i.e., whé&na continuous variable,
has several physical applications, see e.g., [20] and wl&ia discrete variable it is a dif-
ference equation of Emden—Fowler type and also is impomaapplications. By a solution
of (1.1) we mean a nontrivial real-valued functiarsatisfying equationl(.1) fort > tq > a
for somety > a > 0. A solutionz of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is callechoscillatory. Equation(.1) is said
to be oscillatory if all its solutions are oscillatory. Outention is restricted to those solutions
of (1.1) which exist on some half ling,, c0) and satisfysup{|z(¢)| : ¢ > to} > 0 for any
to > tx.

Much recent attention has been given to dynamic equationsmnscales (or measure
chains), and we refer the reader to the landmark paper oeH[#()] for a comprehensive
treatment of the subject. Since then several authors hgyeuexied on various aspects of
this new theory; see the survey paper by Agarwal, Bohner,e@dr, and Petersoi][and
the references cited therein. Two books on the subject & Soales, by Bohner and Peterson
[9, 10], summarize and organize much of the time scale calculus.
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In recent years there has been much research activity agingethe oscillation and
nonoscillation of solutions of dynamic equations on timalss. We refer the reader to the
papers®, 3,4,7,11, 12,13, 14,15, 16,17, 18,19, 21, 23].

In [3], Akin-Bohner and Hoffacker considered the second ordeadyic equation

(1.4) e®2(t) +q()2" (o(t) = 0

and gave necessary and sufficient conditions for osciladiall solutions when, > 1 and
0 < v < 1. Their results cannot be applied in the case whea 1 and applied only to
discrete time scales.

In this paper we use the Riccati transformation techniquebtain some oscillation cri-
teria for (1.1) when (1.2 or (1.3) holds. Our results can be applied in the case 1 and also
for any time scale. So our results extend and improve thdtsesstablished by Akin-Bohner
and Hoffacker ]. The paper is organized as follows. In the next section ves@nt some
basic definitions concerning the calculus on time scalesSelction3 we develop a Riccati
transformation technique and give some fundamental lemritagse lemmas are used to
give sufficient conditions for oscillation of all solutio$ (1.1) in the superlinear case, i.e.,
when~ > 1 (in Section4) and in the sublinear case, i.e., where (0, 1) (see Sectiorb).
Our results when1(.2) holds are sulfficient for oscillation of all solutions df.{), and when
(1.3 holds our results ensure that all solutions are eitheilagaiy or converge to zero. For
the superlinear case we present an extension of the clhssgiiason [5] result, and for the
sublinear case we present an extension of the classicah&elo ] result.

Since we are interested in oscillatory behavior, we supplaethe time scale under
consideration is not bounded above, i.e., it is a time scaéval of the forma, o).

2. Some Preliminaries on Time ScalesA time scal€T is an arbitrary nonempty closed
subset of the real numbelRs On any time scal& we define théorward andbackward jump
operatorsby

o(t):=inf{seT: s>t} and p(t):=sup{seT: s<t}.

A pointt € T with ¢ > inf T is said to be left-dense ji(¢t) = ¢ and right-dense i&(¢) = ¢,
left-scattered ifp(¢) < t and right-scattered & (¢) > ¢. Thegraininessfunction for a time
scaleT is defined byu(t) := o(t) — t. For a functionf : T — R (the rangeR of f may
actually be replaced by any Banach space) the (da¢tayativeis defined by

flo(t) = F(t)
o(t)—t

if fis continuous at andt is right-scattered. If is not right-scattered, then the derivative is
defined by

(2.1) 2 =

(2.2) A0 = tim 20 = F) g SO = F)

s—t t—s t—oo t—s

provided this limit exists. A functiory : [a,b] — R is said to be rd-continuous if it is
continuous at each right-dense point and there exists a fafitlimit at all left-dense points,
and f is said to be differentiable if its derivative exists. A usdbrmula is

(2.3) Flo(t) = f(t) + u()F2 ().

We will make use of the product and quotient rules for thew@give of the producfg and
the quotientf /g (wheregg® # 0) of two differentiable functiong andg

A
(2.4) (f9) = f2g+ 79" = fg® + [2¢° and (5) - %-
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Fora,b € T and a differentiable functiof, the Cauchy integral of » is defined by
b

| 2 wat= 1) - s

An integration by parts formula reads
b , b
[ g @ae= (gl - |1 wglownac

and infinite integrals are defined as

9] b

/ f)At = blim f(t)At.
Note that in the cas& = R we have
b b
o0 =)=t 120 =0, [ sose= [ rwa,
and in the cas& = Z we have
b b—1

o(t) =t+1, p(t)=t—1, f2(t)=Af(t) = ft+1)—f(2), / F)AL =" f(i).

3. A Riccati Transformation. Crucial for our calculations is the following lemma.
LEmMMA 3.1.If z andx are differentiable on a time sca®ewith z(t) # O forall ¢ € T,
then we have

L2\ A PNNE
(3.2) z® <;) = (ZA)Q — xx’ {(E) ] .
Proof. Using @.3), (2.4), and(2?)® = 22(z + 27) = 22(2z + uz?), we obtain

" (_)A b [(g)ﬁy

A 222z + puzP)x — 222B
=z

2
i |:ZA£C — zxA}
rr’ | ——

xx’ xx’
- 2rxtzz® — (za:A)Q + (ZAZC — zxA)Q + ;LxA:c (ZA)2
nd
B (ZA:E)2 + (2% —z)zx (ZA)2
T’

= (%),
This shows that3.1) holds. O
Using Lemma3.1, we now derive the following result.
THEOREM 3.2. Suppose: solves(1.1) such thatx(¢) # 0 forall t € T. Letz be any
differentiable function and define by theRiccati substitution

2, ..
(3.2) w="Pr"

xY
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Then we have

59 —wt = q ()" - <p—>AA (=) + pf(iﬁ) [Q%ff-

Proof. We use again.3) and @.4) to find

22 A
x

Now applying formula 8.1) from Lemma3.1 (with x replaced byz”), we arrive at 8.3).
d

We will use the above Theore® 2 several times for the remainder of this paper, in
conjunction with the formula

A 1
(IA) 27/0 [ha” + (1 = h)a]~" dh,

which is a simple consequence of Keller's chain r@delTheorem 1.90].

The following result is used frequently in the remainderto$tpaper.

LEMMA 3.3. Assume thatl.2) holds. Ifz is a solution of(1.1) such thatz(¢) > 0 for
all t > tg, then

(3.4)

x

(3.5) z2(t) >0 for t>tg.

Proof. In view of (1.1) we have
(3.6) (pz)2(t) = —q(t)a7 (o (t)) < 0

forall t > to, and soy := pz® is an eventually decreasing function. We first show thist
eventually nonnegative. Suppose there exists ¢, such thaty(¢;) < 0. Then from B.6)
we havey(t) < y(t1) fort > t;. Hence

y(t1)
22 < p(t)’
which implies by (..2) that
(3.7) 2(t) < x(t1) + y(t1) /tl ]% — —00 as t— oo,

contradicting the fact that(¢) > 0 for all t > to. Hencey(t) = p(t)=>(t) is eventually
nonnegative. Therefore, we see that there exists ggrsiech that

z(t) >0, 22(t)>0, yt)>0, y>(t)<0 for t>tg.
Hence 8.5 holds. O
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4. Oscillation Criteria in the Superlinear Case. In this section we give some oscilla-
tion criteria wheny € N is odd.

First we consider the case wheifl.2) holds.

THEOREMA4.1. Assume thatl.2) holds. Furthermore, assume that there exists a differ-
entiable functiore such that

(4.1) lim sup /at [q(s) (27(s))> — K7 'p(s) (ZA(S))Q] As =00

t—o0

holds for all constantg( > 0. Then every solution dfL.1) is oscillatory on[a, co).

Proof. Suppose to the contrary thats a nonoscillatory solution ofi(1). Without loss of
generality, we may assume thais an eventually positive solution of (1) such thatz(¢) > 0
forallt > tg > a. We shall consider only this case, since the substitutien—a transforms
equation {.1) into an equation of the same form. By Lem®& we obtain that$.5) holds.
Now note thaty > 1 and @3.4) imply

(2) (1)
A

1
20 [ e+ 1= matr " an

- / (hae(t) + (1 — hye(t)]"~" dh

— (b))
D (o)
_ 1

= 5

where we puf\/ := (71/(V—1)x(t0))71. Note M > 0. Now define the functiom on [to, o)
by (3.2). Then @.5 impliesw(t) > 0 for all ¢ > ty. Therefore, using3.3 from Theorem
3.2, we obtain

w(to) > w(to) —w(t)

2
(;m)A()s) (F)A(S)} As
t A
> [ o s L ()7 s
> [ ) 7 - ats) (26} s
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which is impossible. The proofis complete. [
COROLLARY 4.2. Assume tha{l.2) holds. Furthermore, assume that there exists a
positive differentiable functiof such that

(4.2) lim sup /t q(s)67(s) — K7 'p(s) 02(s) 2 As =00
' t—oo Ja VOo(s)+1/67(s)

holds for all constantd{ > 0. Then every solution dfL.1) is oscillatory on|a, o).
Proof. Definez = /4 and note thatd]

A 0%

T Voo

Since @.2) holds ford, (4.1) holds forz. So the claim follows by Theorer 1 d

From Theoremt.1and Corollary4.2 we can obtain different conditions for oscillation
of all solutions of (..1) by different choices 0f. For instance, we obtain the following two
corollaries if we choosé(t) = 1 andj(t) = ¢, respectively. The first choice confirms that
the Leighton—Wintner theorem is valid for Emden—Fowler ayric equations.

COROLLARY 4.3 (Leighton—Wintner)Assume

(4.3) /OO I% =oco and /OO q(t) At = co.

Then every solution of1.1) is oscillatory on[a, co).
COROLLARY 4.4. Assume thafl.2) holds. Furthermore, assume that

(4.4) lim sup /t q(s)o(s) — K”‘lp(s); As =00

o (vi+vam)

holds for all constantd( > 0. Then every solution dfL.1) is oscillatory ona, ).

The next result is the same &% [Theorem 5] wherp(¢) = 1. But we note that§,
Theorem 5] cannot be applied in the case when- 1 and also not for the second order
Emden-Fowler differential equation, i.e., wh&n= R. So the following result extends and
improves in various ways the results establishe@]jnlfs classical version was given in 1955
by Atkinson B].

THEOREM4.5. Assume thafl.2) holds. Define

p(t):/:]%.

t
(4.5) limsup/ P(o(s))q(s)As = oo,
t—o0 a
then every solution of1.1) is oscillatory onfa, 0o).

Proof. Again we suppose is a solution of {.1) such that:(¢) > 0 for all ¢ > ¢y. By
Lemma3.3we obtain 8.5. Now we letz = /P and define the Riccati substitutian by
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(3.2). Using the product rule from2(4), we calculate
1
Wt = {2 4 P et f ) e
=2%(277)7 = P7q+ Ppz®(z )%

S (xl—v)A
1—v

a

-P q,
where the last inequality is true because ) < 0 due to 8.4) and because

(@) o

= 2 =) [ e+ = mao) @

1
< (1—7)/0 ha? (8) + (1 — h)a (1) dh
- H) .

Upon integration we arrive at

/ :P<a<s>>q<s>As < / { fl_; - w}A (5)As

r17(t) 2177 (to)

== - = )
2177 (to)
Tlo + w(tp).

This contradicts4.5) and finishes the proof. 0
Puttingp(t) = 1, i.e., P(t) = t in Theoremd.5, we obtain the following corollary.
COROLLARY 4.6.Assume(t) = 1. If

¢
(4.6) limsup/ o(s)q(s)As = oo,
t—o0 a

then every solution of1.1) is oscillatory on[a, co).
EXAMPLE 4.7. Consider the dynamic equation

1

(47) .I'AA + m

() =0 for t>1.

Herep(t) = 1 andq(t) = ﬁ Using [8, Theorem 5.11], we find
/ o(s)q(s)As = / As = o0.
t() tO s

Hence, by Corollaryt.6, equation(4.7) is oscillatory on[1, co).
THEOREM4.8. Assume thatl.2) holds. If there exists a positive differentiable function
0 and an odd integem € N such that

_ E7T(0%(5)°p(s)

(Va+ V@)

As = o

(4.8) limsuptim/ (t—3s)" |6(a(s))q(s)

t—oo
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holds for all K > 0, then every solution of1.1) oscillates ona, co).
Proof. The proofis similar to23, Theorem 3.2] and hence is omitted. O
Note that wherd(t) = 1, then @.8) reduces to

t—o0

1 t
lim sup o / (t—s)"q(s)As = o0,

which can be considered as an extension of Kamenev typéatiecilcriteria for second order
differential equations (se€¥)).

Next we consider the case whe(i.3) holds. Now we give some sufficient conditions
when (L.3) holds, which guarantee that every solution bflf oscillates or converges to zero
onfa, o).

THEOREM4.9. Assume thatl.3) holds. Furthermore, assume that there exists a positive
functiond such that(4.1) holds, and

(4.9) /aoo Lﬁ /: q(s)As} At = 0.

Then every solution of equatigh.1) is oscillatory or converges to zero dam, co).

THEOREM 4.10. Assume tha{l1.3) holds. Furthermore, assume that there exists a
positive functiony such that(4.8) and (4.9) hold. Then every solution of equati¢h.]) is
oscillatory or converges to zero da, oo).

5. Oscillation Criteria in the Sublinear Case. In this section we give some new oscil-
lation criteria for (L.1) when~y € (0, 1) is a quotient of odd positive integers.

First we consider the case wheifl.2) holds.
THEOREMS5.1. Assume thatl.2) holds and suppose thatis differentiable and nonde-
creasing. Furthermore, assume that there exists a diffexble functionz such that

6 tmsp [ [o6s) ()" = K ol9)7 pl) (:(6)) ] As = o

holds for all constantd{ > 0. Then every solution dfL.1) is oscillatory on|a, cc).

Proof. Suppose to the contrary thats a nonoscillatory solution ofl(1). Without loss of
generality, we may assume thais an eventually positive solution of (1) such that:(¢) > 0
forall ¢t >ty > a. Hence, by Lemma&.3, we obtain 8.5), which implies

0> (pa®)2(t) = p™ ()22 (1) + 7 (H)222(1)

so that, again by using3(5), 224 (t) < 0 for all t > t,. Hencez® is nonincreasing on
[to, 00), and therefore we obtain

x(t) = z(to) +/ 22 (5)As < o+ B,

to

wherea = x(tg) — tox™ (to) andf = x> (to). By puttingL = |a|+ 8 andt; > max{tg, 1},
we find that

(5.2) xz(t) < Lt forall t>t.
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Now note thaty € (0,1) and @.4) imply

A 1
%@)@ Dy /0 [ha® (t) + (1 — k()" dh

Y

1
7/0 [ha? (t) + (1 — h)z ()]~ dh
(@7 ()"

Y(Lo(t))" !
(o))"
M1

G
VTl

where we putV/ := (71/(7*1>L)_1. Note M > 0. Now define the functiom on [tg, co) by
(3.2. Then @.5) impliesw(t) > 0 for all t > to. Therefore, using3.3) from Theorens.2,
we obtain

w(ty) > w(t1) —w(t)

> /: {q(s) (27(5))* - p<5)% (ZA(S))Q} o

> / | {a(9) (7)) = M7 (0(5)) pls) (:°(5)" } As

5.1)
(—>) oo as t— oo,

which is impossible. The proofis complete. 0O

The next result follows as in the proof of Corollagy?2.

COROLLARY 5.2. Assume tha{1.2) holds and suppose that is differentiable and
nondecreasing. Furthermore, assume that there exists aiymslifferentiable functiord
such that

As = oo

t—00 VO(8) +1/67(s)

holds for all constantg( > 0. Then every solution dfL.1) is oscillatory on[a, co).

From Theorenb.1and Corollary5.2 we can obtain different conditions for oscillation
of all solutions of (..1) by different choices o0f. For instance, we obtain the following two
corollaries if we choosé(t) = 1 andd(t) = ¢, respectively.

COROLLARY 5.3 (Leighton—Wintner).Suppose is differentiable and nondecreasing
and assume

(5.4) /OO Z% =oo and /OO q(t) At = .

t A s 2
(5.3) limsup/ [(I(S)dg(s)—Kv1p($)(0’(5))17 ( 0 ( ) )
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Then every solution of1.1) is oscillatory on[a, co).
COROLLARY 5.4. Assume tha{1.2 holds and suppose that is differentiable and
nondecreasing. Furthermore, assume that

(5.5) lim sup/ q(s)o(s) — K"il(a(s))lf'yp(s); As =00

e (Va+ve®)

holds for all constantg( > 0. Then every solution dfL.1) is oscillatory ona, ).

The next result gives a condition for oscillation in the snbar case. Its classical version
was given in 1961 by Belohore6]|

THEOREM5.5. Assume thafl.2) holds. If

(5.6) | (G20 aai - o,

then every solution ofl1.1) is oscillatory ona, o).

Proof. We suppose that is a solution of {.1) satisfyingz(¢t) > 0 forall t > ¢, and let
y = pz®. Then by Lemm&.3we obtain thay(t) > 0 andy®(¢) < 0 forall ¢ > t,. First
observe that

t
t
z(t) = 2(ty) +/ 22 (s)As > 22 () (t — to) > 5;CA(lt)
to
forall t > t5 if to > 2tg. Next note that

1—y A .
(yT)(t)(t) “a ‘7)/0 (hy? () + (1 — h)y(6)] " dh

1
< (=) [ B+ = ny o] dn
= (=77 #)".
Using these two inequalities, we obtain after divididglf by (y7 (¢))” forall ¢t > o,

y2(t) +q(t)(=7) (1)
(y (1)

y )\ ot) '\
> (=) 90 (gy) -
Upon integration we arrive at

[l (G2 e [ seon

27 2”7
- y ()
-

0=
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This contradicts§.6) and finishes the proof. 0
Puttingp(t) = 1 in Theorem5.5, we obtain the following corollary.
COROLLARY 5.6.Assume thap(t) = 1. If

(5.7) / (o) a(t) AL = o,

then every solution of1.1) is oscillatory on[a, oo).
EXAMPLE 5.7. Consider the dynamic equation

1
t(o(t))?

Herep(t) = 1 andq(t) = W As in Examplé.7it follows from Corollary5.6that (5.8)
is oscillatory on[1, oo).

THEOREMS5.8. Assume that is differentiable and nondecreasing and suppose(th&)
holds. If there exists a positive differentiable functioand an odd integem € N such that

(5.8) A8+ ()3 =0 for t>1.

K (o) (05 (5)()
(va+o)

for all constantsK” > 0, then every solution ofl.1) oscillates ora, co).
Proof. The proofis similar to23, Theorem 3.2] and hence is omitted. [

As = o0

6.9) timsup - [ (£ |50(5)a(s

Next we consider the case whe(il.3) holds. Now we give some sufficient conditions
when (L.3) holds, which guarantee that every solution Dflj oscillates or converges to zero
onla, 00).

THEOREM5.9. Assume thap> (¢) > 0 and that(1.3) holds. Furthermore, assume that
there exists a positive functi@nsuch that(5.1) holds, and

(5.10) /aoo ﬁ /alt ¢(s)AsAt = oo,

Then every solution of equatig¢h.1) is oscillatory or converges to zero dam, o).

THEOREM 5.10. Assume thap®(t) > 0 and that(1.3 holds. Furthermore, assume
that there exists a positive functiérsuch that(5.9) and (5.10 hold. Then every solution of
equation(1.1) is oscillatory or converges to zero o, o).

REMARK 5.11.Note that our results also can be extended to the more geaqeition

(p(t)a ()™ + q(t) [a(a(1))|" sgn ((a(t))) =0 for ¢ € [a,b],

wherey > 0 to cover the case whenis even.
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