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OSCILLATION CRITERIA FOR A CERTAIN CLASS OF SECOND ORDER
EMDEN–FOWLER DYNAMIC EQUATIONS ∗

ELVAN AKIN–BOHNER†, MARTIN BOHNER†, AND SAMIR H. SAKER‡

Abstract. By means of Riccati transformation techniques we establishsome oscillation criteria for the second
order Emden–Fowler dynamic equation on a time scale. Such equations contain the classical Emden–Fowler equa-
tion as well as their discrete counterparts. The classical oscillation results of Atkinson (in the superlinear case) and
Belohorec (in the sublinear case) are extended in this paperto Emden–Fowler dynamic equations on any time scale.
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1. Introduction. In this paper we shall consider the second order Emden–Fowler dy-
namic equation

(1.1) (px∆)∆(t) + q(t)xγ(σ(t)) = 0 for t ∈ [a, b]

on a time scale, wherep andq are positive, real-valued rd-continuous functions, andγ is an
odd positive integer. We shall also consider the two cases

(1.2)
∫

∞

t0

∆t

p(t)
= ∞

and

(1.3)
∫

∞

t0

∆t

p(t)
< ∞.

In the case ofγ > 1, (1.1) is the prototype of a wide class of nonlinear dynamic equations
called Emden–Fowler superlinear dynamic equations, and if0 < γ < 1, then (1.1) is the
prototype of dynamic equations called Emden–Fowler sublinear dynamic equations. It is in-
teresting to study (1.1) because the continuous version, i.e., whent is a continuous variable,
has several physical applications, see e.g., [20] and whent is a discrete variable it is a dif-
ference equation of Emden–Fowler type and also is importantin applications. By a solution
of (1.1) we mean a nontrivial real-valued functionx satisfying equation (1.1) for t ≥ t0 ≥ a
for somet0 ≥ a > 0. A solutionx of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is called nonoscillatory. Equation (1.1) is said
to be oscillatory if all its solutions are oscillatory. Our attention is restricted to those solutions
of (1.1) which exist on some half line[tx,∞) and satisfysup{|x(t)| : t > t0} > 0 for any
t0 ≥ tx.

Much recent attention has been given to dynamic equations ontime scales (or measure
chains), and we refer the reader to the landmark paper of Hilger [20] for a comprehensive
treatment of the subject. Since then several authors have expounded on various aspects of
this new theory; see the survey paper by Agarwal, Bohner, O’Regan, and Peterson [1] and
the references cited therein. Two books on the subject of time scales, by Bohner and Peterson
[9, 10], summarize and organize much of the time scale calculus.
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In recent years there has been much research activity concerning the oscillation and
nonoscillation of solutions of dynamic equations on time scales. We refer the reader to the
papers [2, 3, 4, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23].

In [3], Akın-Bohner and Hoffacker considered the second order dynamic equation

(1.4) x∆∆(t) + q(t)xγ(σ(t)) = 0

and gave necessary and sufficient conditions for oscillation of all solutions whenγ > 1 and
0 < γ < 1. Their results cannot be applied in the case whenγ = 1 and applied only to
discrete time scales.

In this paper we use the Riccati transformation technique toobtain some oscillation cri-
teria for (1.1) when (1.2) or (1.3) holds. Our results can be applied in the caseγ = 1 and also
for any time scale. So our results extend and improve the results established by Akın-Bohner
and Hoffacker [3]. The paper is organized as follows. In the next section we present some
basic definitions concerning the calculus on time scales. InSection3 we develop a Riccati
transformation technique and give some fundamental lemmas. These lemmas are used to
give sufficient conditions for oscillation of all solutionsof (1.1) in the superlinear case, i.e.,
whenγ ≥ 1 (in Section4) and in the sublinear case, i.e., whenγ ∈ (0, 1) (see Section5).
Our results when (1.2) holds are sufficient for oscillation of all solutions of (1.1), and when
(1.3) holds our results ensure that all solutions are either oscillatory or converge to zero. For
the superlinear case we present an extension of the classical Atkinson [5] result, and for the
sublinear case we present an extension of the classical Belohorec [6] result.

Since we are interested in oscillatory behavior, we supposethat the time scale under
consideration is not bounded above, i.e., it is a time scale interval of the form[a,∞).

2. Some Preliminaries on Time Scales.A time scaleT is an arbitrary nonempty closed
subset of the real numbersR. On any time scaleT we define theforwardandbackward jump
operatorsby

σ(t) := inf {s ∈ T : s > t} and ρ(t) := sup {s ∈ T : s < t} .

A point t ∈ T with t > inf T is said to be left-dense ifρ(t) = t and right-dense ifσ(t) = t,
left-scattered ifρ(t) < t and right-scattered ifσ(t) > t. Thegraininessfunctionµ for a time
scaleT is defined byµ(t) := σ(t) − t. For a functionf : T → R (the rangeR of f may
actually be replaced by any Banach space) the (delta)derivativeis defined by

(2.1) f∆(t) =
f(σ(t)) − f(t)

σ(t) − t

if f is continuous att andt is right-scattered. Ift is not right-scattered, then the derivative is
defined by

(2.2) f∆(t) = lim
s→t

f(σ(t)) − f(s)

t − s
= lim

t→∞

f(t) − f(s)

t − s

provided this limit exists. A functionf : [a, b] → R is said to be rd-continuous if it is
continuous at each right-dense point and there exists a finite left limit at all left-dense points,
andf is said to be differentiable if its derivative exists. A useful formula is

(2.3) f(σ(t)) = f(t) + µ(t)f∆(t).

We will make use of the product and quotient rules for the derivative of the productfg and
the quotientf/g (whereggσ 6= 0) of two differentiable functionsf andg

(2.4) (fg)∆ = f∆g + fσg∆ = fg∆ + f∆gσ and

(

f

g

)∆

=
f∆g − fg∆

ggσ
.
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Fora, b ∈ T and a differentiable functionf , the Cauchy integral off∆ is defined by

∫ b

a

f∆(t)∆t = f(b) − f(a).

An integration by parts formula reads

∫ b

a

f(t)g∆(t)∆t = [f(t)g(t)]
b
a −

∫ b

a

f∆(t)g(σ(t))∆t,

and infinite integrals are defined as

∫

∞

a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t.

Note that in the caseT = R we have

σ(t) = ρ(t) = t, f∆(t) = f ′(t),

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

and in the caseT = Z we have

σ(t) = t+1, ρ(t) = t−1, f∆(t) = ∆f(t) = f(t+1)−f(t),

∫ b

a

f(t)∆t =

b−1
∑

i=a

f(i).

3. A Riccati Transformation. Crucial for our calculations is the following lemma.
LEMMA 3.1. If z andx are differentiable on a time scaleT with x(t) 6= 0 for all t ∈ T,

then we have

(3.1) x∆

(

z2

x

)∆

=
(

z∆
)2 − xxσ

[

( z

x

)∆
]2

.

Proof. Using (2.3), (2.4), and(z2)∆ = z∆(z + zσ) = z∆(2z + µz∆), we obtain

x∆

(

z2

x

)∆

+ xxσ

[

( z

x

)∆
]2

= x∆ z∆(2z + µz∆)x − z2x∆

xxσ
+ xxσ

[

z∆x − zx∆

xxσ

]2

=
2xx∆zz∆ −

(

zx∆
)2

+
(

z∆x − zx∆
)2

+ µx∆x
(

z∆
)2

xxσ

=

(

z∆x
)2

+ (xσ − x) x
(

z∆
)2

xxσ

=
(

z∆
)2

.

This shows that (3.1) holds.
Using Lemma3.1, we now derive the following result.
THEOREM 3.2. Supposex solves(1.1) such thatx(t) 6= 0 for all t ∈ T. Let z be any

differentiable function and definew by theRiccati substitution

(3.2) w =
z2px∆

xγ
.
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Then we have

(3.3) −w∆ = q (zσ)
2 − px∆

(xγ)∆
(

z∆
)2

+
px∆ (xxσ)

γ

(xγ)∆

[

( z

xγ

)∆
]2

.

Proof. We use again (2.3) and (2.4) to find

−w∆ = −
[

z2

xγ
px∆

]∆

= −
{

(

z2

xγ

)σ
(

px∆
)∆

+

(

z2

xγ

)∆

px∆

}

= q (zσ)
2 − px∆

(

z2

xγ

)∆

= q (zσ)
2 − px∆

(xγ)
∆

(xγ)
∆

(

z2

xγ

)∆

.

Now applying formula (3.1) from Lemma3.1 (with x replaced byxγ), we arrive at (3.3).

We will use the above Theorem3.2 several times for the remainder of this paper, in
conjunction with the formula

(3.4)
(xγ)∆

x∆
= γ

∫ 1

0

[hxσ + (1 − h)x]
γ−1

dh,

which is a simple consequence of Keller’s chain rule [9, Theorem 1.90].
The following result is used frequently in the remainder of this paper.
LEMMA 3.3. Assume that(1.2) holds. Ifx is a solution of(1.1) such thatx(t) > 0 for

all t ≥ t0, then

(3.5) x∆(t) ≥ 0 for t ≥ t0.

Proof. In view of (1.1) we have

(3.6) (px∆)∆(t) = −q(t)xγ(σ(t)) < 0

for all t ≥ t0, and soy := px∆ is an eventually decreasing function. We first show thaty is
eventually nonnegative. Suppose there existst1 ≥ t0 such thaty(t1) < 0. Then from (3.6)
we havey(t) < y(t1) for t ≥ t1. Hence

x∆(t) ≤ y(t1)

p(t)
,

which implies by (1.2) that

(3.7) x(t) ≤ x(t1) + y(t1)

∫ t

t1

∆s

p(s)
→ −∞ as t → ∞,

contradicting the fact thatx(t) > 0 for all t ≥ t0. Hencey(t) = p(t)x∆(t) is eventually
nonnegative. Therefore, we see that there exists somet0 such that

x(t) > 0, x∆(t) ≥ 0, y(t) ≥ 0, y∆(t) < 0 for t ≥ t0.

Hence (3.5) holds.
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4. Oscillation Criteria in the Superlinear Case. In this section we give some oscilla-
tion criteria whenγ ∈ N is odd.

First we consider the case when(1.2) holds.

THEOREM 4.1. Assume that(1.2) holds. Furthermore, assume that there exists a differ-
entiable functionz such that

(4.1) lim sup
t→∞

∫ t

a

[

q(s) (zσ(s))
2 − Kγ−1p(s)

(

z∆(s)
)2
]

∆s = ∞

holds for all constantsK > 0. Then every solution of(1.1) is oscillatory on[a,∞).

Proof. Suppose to the contrary thatx is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume thatx is an eventually positive solution of (1.1) such thatx(t) > 0
for all t ≥ t0 > a. We shall consider only this case, since the substitutionx̃ = −x transforms
equation (1.1) into an equation of the same form. By Lemma3.3we obtain that (3.5) holds.
Now note thatγ ≥ 1 and (3.4) imply

(xγ)
∆

(t)

x∆(t)

(3.4)
= γ

∫ 1

0

[hxσ(t) + (1 − h)x(t)]γ−1 dh

≥ γ

∫ 1

0

[hx(t) + (1 − h)x(t)]
γ−1

dh

= γ(x(t))γ−1

(3.5)
≥ γ(x(t0))

γ−1

=
1

Mγ−1
,

where we putM :=
(

γ1/(γ−1)x(t0)
)−1

. NoteM > 0. Now define the functionw on [t0,∞)
by (3.2). Then (3.5) impliesw(t) ≥ 0 for all t ≥ t0. Therefore, using (3.3) from Theorem
3.2, we obtain

w(t0) ≥ w(t0) − w(t)

= −
∫ t

t0

w∆(s)∆s

=

∫ t

t0

{

q(s) (zσ(s))
2 − p(s)

x∆(s)

(xγ)∆(s)

(

z∆(s)
)2
}

∆s

+

∫ t

t0

p(s)
x∆(s)

(xγ)∆(s)
(x(s)xσ(s))

γ

[

( z

xσ

)∆

(s)

]2

∆s

≥
∫ t

t0

{

q(s) (zσ(s))
2 − p(s)

x∆(s)

(xγ)∆(s)

(

z∆(s)
)2
}

∆s

≥
∫ t

t0

{

q(s) (zσ(s))
2 − Mγ−1p(s)

(

z∆(s)
)2
}

∆s

(4.1)→ ∞ as t → ∞,
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which is impossible. The proof is complete.
COROLLARY 4.2. Assume that(1.2) holds. Furthermore, assume that there exists a

positive differentiable functionδ such that

(4.2) lim sup
t→∞

∫ t

a



q(s)δσ(s) − Kγ−1p(s)

(

δ∆(s)
√

δ(s) +
√

δσ(s)

)2


∆s = ∞

holds for all constantsK > 0. Then every solution of(1.1) is oscillatory on[a,∞).
Proof. Definez =

√
δ and note that [9]

z∆ =
δ∆

√
δ +

√
δσ

.

Since (4.2) holds forδ, (4.1) holds forz. So the claim follows by Theorem4.1.
From Theorem4.1 and Corollary4.2 we can obtain different conditions for oscillation

of all solutions of (1.1) by different choices ofδ. For instance, we obtain the following two
corollaries if we chooseδ(t) ≡ 1 andδ(t) = t, respectively. The first choice confirms that
the Leighton–Wintner theorem is valid for Emden–Fowler dynamic equations.

COROLLARY 4.3 (Leighton–Wintner).Assume

(4.3)
∫

∞

a

∆t

p(t)
= ∞ and

∫

∞

a

q(t)∆t = ∞.

Then every solution of(1.1) is oscillatory on[a,∞).
COROLLARY 4.4. Assume that(1.2) holds. Furthermore, assume that

(4.4) lim sup
t→∞

∫ t

a






q(s)σ(s) − Kγ−1p(s)

1
(√

s +
√

σ(s)
)2






∆s = ∞

holds for all constantsK > 0. Then every solution of(1.1) is oscillatory on[a,∞).
The next result is the same as [3, Theorem 5] whenp(t) ≡ 1. But we note that [3,

Theorem 5] cannot be applied in the case whenγ = 1 and also not for the second order
Emden–Fowler differential equation, i.e., whenT = R. So the following result extends and
improves in various ways the results established in [3]. Its classical version was given in 1955
by Atkinson [5].

THEOREM 4.5. Assume that(1.2) holds. Define

P (t) =

∫ t

a

∆s

p(s)
.

If

(4.5) lim sup
t→∞

∫ t

a

P (σ(s))q(s)∆s = ∞,

then every solution of(1.1) is oscillatory on[a,∞).
Proof. Again we supposex is a solution of (1.1) such thatx(t) > 0 for all t ≥ t0. By

Lemma3.3 we obtain (3.5). Now we letz =
√

P and define the Riccati substitutionw by
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(3.2). Using the product rule from (2.4), we calculate

w∆ =

{

1

p
px∆ + P σ(px∆)∆

}

(x−γ)σ + Ppx∆(x−γ)∆

= x∆(x−γ)σ − P σq + Ppx∆(x−γ)∆

≤ (x1−γ)∆

1 − γ
− P σq,

where the last inequality is true because(x−γ)∆ ≤ 0 due to (3.4) and because

(

x1−γ
)∆

(t)

x∆(t)

(3.4)
= (1 − γ)

∫ 1

0

[hxσ(t) + (1 − h)x(t)]
−γ

dh

≤ (1 − γ)

∫ 1

0

[hxσ(t) + (1 − h)xσ(t)]
−γ

dh

= (1 − γ)(xσ(t))−γ .

Upon integration we arrive at

∫ t

t0

P (σ(s))q(s)∆s ≤
∫ t

t0

{

x1−γ

1 − γ
− w

}∆

(s)∆s

=
x1−γ(t)

1 − γ
− w(t) − x1−γ(t0)

1 − γ
+ w(t0)

≤ x1−γ(t0)

γ − 1
+ w(t0).

This contradicts (4.5) and finishes the proof.
Puttingp(t) ≡ 1, i.e.,P (t) = t in Theorem4.5, we obtain the following corollary.
COROLLARY 4.6. Assumep(t) ≡ 1. If

(4.6) lim sup
t→∞

∫ t

a

σ(s)q(s)∆s = ∞,

then every solution of(1.1) is oscillatory on[a,∞).
EXAMPLE 4.7. Consider the dynamic equation

(4.7) x∆∆ +
1

tσ(t)
(xσ)2 = 0 for t ≥ 1.

Herep(t) ≡ 1 andq(t) = 1
tσ(t) . Using [8, Theorem 5.11], we find

∫

∞

t0

σ(s)q(s)∆s =

∫

∞

t0

∆s

s
= ∞.

Hence, by Corollary4.6, equation(4.7) is oscillatory on[1,∞).
THEOREM 4.8. Assume that(1.2) holds. If there exists a positive differentiable function

δ and an odd integerm ∈ N such that

(4.8) lim sup
t→∞

1

tm

∫ t

a

(t − s)m






δ(σ(s))q(s) − Kγ−1(δ∆(s))2p(s)

(√
s +

√

σ(s)
)2






∆s = ∞
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holds for allK > 0, then every solution of(1.1) oscillates on[a,∞).
Proof. The proof is similar to [23, Theorem 3.2] and hence is omitted.
Note that whenδ(t) ≡ 1, then (4.8) reduces to

lim sup
t→∞

1

tm

∫ t

a

(t − s)mq(s)∆s = ∞,

which can be considered as an extension of Kamenev type oscillation criteria for second order
differential equations (see [22]).

Next we consider the case when(1.3) holds. Now we give some sufficient conditions
when (1.3) holds, which guarantee that every solution of (1.1) oscillates or converges to zero
on [a,∞).

THEOREM4.9.Assume that(1.3) holds. Furthermore, assume that there exists a positive
functionδ such that(4.1) holds, and

(4.9)
∫

∞

a

[

1

p(t)

∫ t

a

q(s)∆s

]

∆t = ∞.

Then every solution of equation(1.1) is oscillatory or converges to zero on[a,∞).
THEOREM 4.10. Assume that(1.3) holds. Furthermore, assume that there exists a

positive functionδ such that(4.8) and (4.9) hold. Then every solution of equation(1.1) is
oscillatory or converges to zero on[a,∞).

5. Oscillation Criteria in the Sublinear Case. In this section we give some new oscil-
lation criteria for (1.1) whenγ ∈ (0, 1) is a quotient of odd positive integers.

First we consider the case when(1.2) holds.
THEOREM 5.1. Assume that(1.2) holds and suppose thatp is differentiable and nonde-

creasing. Furthermore, assume that there exists a differentiable functionz such that

(5.1) lim sup
t→∞

∫ t

a

[

q(s) (zσ(s))
2 − Kγ−1(σ(s))γ−1p(s)

(

z∆(s)
)2
]

∆s = ∞

holds for all constantsK > 0. Then every solution of(1.1) is oscillatory on[a,∞).
Proof. Suppose to the contrary thatx is a nonoscillatory solution of (1.1). Without loss of

generality, we may assume thatx is an eventually positive solution of (1.1) such thatx(t) > 0
for all t ≥ t0 > a. Hence, by Lemma3.3, we obtain (3.5), which implies

0 ≥ (px∆)∆(t) = p∆(t)x∆(t) + pσ(t)x∆∆(t)

so that, again by using (3.5), x∆∆(t) ≤ 0 for all t ≥ t0. Hencex∆ is nonincreasing on
[t0,∞), and therefore we obtain

x(t) = x(t0) +

∫ t

t0

x∆(s)∆s ≤ α + βt,

whereα = x(t0)− t0x
∆(t0) andβ = x∆(t0). By puttingL = |α|+β andt1 ≥ max{t0, 1},

we find that

(5.2) x(t) ≤ Lt for all t ≥ t1.
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Now note thatγ ∈ (0, 1) and (3.4) imply

(xγ)
∆

(t)

x∆(t)

(3.4)
= γ

∫ 1

0

[hxσ(t) + (1 − h)x(t)]
γ−1

dh

≥ γ

∫ 1

0

[hxσ(t) + (1 − h)xσ(t)]
γ−1

dh

= γ(xσ(t))γ−1

(5.2)
≥ γ(Lσ(t))γ−1

=
(σ(t))γ−1

Mγ−1
,

where we putM :=
(

γ1/(γ−1)L
)−1

. NoteM > 0. Now define the functionw on [t0,∞) by
(3.2). Then (3.5) impliesw(t) ≥ 0 for all t ≥ t0. Therefore, using (3.3) from Theorem3.2,
we obtain

w(t1) ≥ w(t1) − w(t)

= −
∫ t

t1

w∆(s)∆s

=

∫ t

t1

{

q(s) (zσ(s))2 − p(s)
x∆(s)

(xγ)∆(s)

(

z∆(s)
)2
}

∆s

+

∫ t

t1

p(s)
x∆(s)

(xγ)∆(s)
(x(s)xσ(s))

γ

[

( z

xσ

)∆

(s)

]2

∆s

≥
∫ t

t1

{

q(s) (zσ(s))
2 − p(s)

x∆(s)

(xγ)∆(s)

(

z∆(s)
)2
}

∆s

≥
∫ t

t1

{

q(s) (zσ(s))
2 − Mγ−1(σ(s))1−γp(s)

(

z∆(s)
)2
}

∆s

(5.1)→ ∞ as t → ∞,

which is impossible. The proof is complete.
The next result follows as in the proof of Corollary4.2.
COROLLARY 5.2. Assume that(1.2) holds and suppose thatp is differentiable and

nondecreasing. Furthermore, assume that there exists a positive differentiable functionδ
such that

(5.3) lim sup
t→∞

∫ t

a



q(s)δσ(s) − Kγ−1p(s)(σ(s))1−γ

(

δ∆(s)
√

δ(s) +
√

δσ(s)

)2


∆s = ∞

holds for all constantsK > 0. Then every solution of(1.1) is oscillatory on[a,∞).
From Theorem5.1 and Corollary5.2 we can obtain different conditions for oscillation

of all solutions of (1.1) by different choices ofδ. For instance, we obtain the following two
corollaries if we chooseδ(t) ≡ 1 andδ(t) = t, respectively.

COROLLARY 5.3 (Leighton–Wintner).Supposep is differentiable and nondecreasing
and assume

(5.4)
∫

∞

a

∆t

p(t)
= ∞ and

∫

∞

a

q(t)∆t = ∞.
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Then every solution of(1.1) is oscillatory on[a,∞).
COROLLARY 5.4. Assume that(1.2) holds and suppose thatp is differentiable and

nondecreasing. Furthermore, assume that

(5.5) lim sup
t→∞

∫ t

a






q(s)σ(s) − Kγ−1(σ(s))1−γp(s)

1
(√

s +
√

σ(s)
)2






∆s = ∞

holds for all constantsK > 0. Then every solution of(1.1) is oscillatory on[a,∞).
The next result gives a condition for oscillation in the sublinear case. Its classical version

was given in 1961 by Belohorec [6].
THEOREM 5.5. Assume that(1.2) holds. If

(5.6)
∫

∞

a

(

σ(t)

p(σ(t))

)γ

q(t)∆t = ∞,

then every solution of(1.1) is oscillatory on[a,∞).
Proof. We suppose thatx is a solution of (1.1) satisfyingx(t) > 0 for all t ≥ t0 and let

y = px∆. Then by Lemma3.3 we obtain thaty(t) > 0 andy∆(t) < 0 for all t ≥ t0. First
observe that

x(t) = x(t0) +

∫ t

t0

x∆(s)∆s ≥ x∆(t)(t − t0) ≥
t

2
x∆(t)

for all t ≥ t2 if t2 > 2t0. Next note that

(

y1−γ
)∆

(t)

y∆(t)

(3.4)
= (1 − γ)

∫ 1

0

[hyσ(t) + (1 − h)y(t)]
−γ

dh

≤ (1 − γ)

∫ 1

0

[hyσ(t) + (1 − h)yσ(t)]
−γ

dh

= (1 − γ)(yσ(t))−γ .

Using these two inequalities, we obtain after dividing (1.1) by (yσ(t))γ for all t ≥ t2,

0 =
y∆(t) + q(t)(xσ)γ(t)

(yσ(t))γ

= y∆(t)(yσ(t))−γ + q(t)

(

x(σ(t))

p(σ(t))x∆(σ(t))

)γ

≥
(

y1−γ(t)

1 − γ

)∆

+ q(t)

(

σ(t)

2p(σ(t))

)γ

.

Upon integration we arrive at

∫ t

t2

q(s)

(

σ(s)

p(σ(s))

)γ

∆s ≤
∫ t

t2

2γ

γ − 1
(y1−γ)∆(s)∆s

=
2γ

1 − γ
y1−γ(t2) −

2γ

1 − γ
y1−γ(t)

≤ 2γ

1 − γ
y1−γ(t2).
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This contradicts (5.6) and finishes the proof.
Puttingp(t) ≡ 1 in Theorem5.5, we obtain the following corollary.
COROLLARY 5.6. Assume thatp(t) ≡ 1. If

(5.7)
∫

∞

a

(σ(t))γq(t)∆t = ∞,

then every solution of(1.1) is oscillatory on[a,∞).
EXAMPLE 5.7. Consider the dynamic equation

(5.8) x∆∆ +
1

t(σ(t))3
(xσ)

1/3
= 0 for t ≥ 1.

Herep(t) ≡ 1 andq(t) = 1
t(σ(t))3 . As in Example4.7it follows from Corollary5.6that (5.8)

is oscillatory on[1,∞).
THEOREM5.8.Assume thatp is differentiable and nondecreasing and suppose that(1.2)

holds. If there exists a positive differentiable functionδ and an odd integerm ∈ N such that

(5.9) lim sup
t→∞

1

tm

∫ t

a

(t − s)m






δ(σ(s))q(s) − K1−γ(σ(s))1−γ(δ∆(s))2p(s)

(√
s +

√

σ(s)
)2






∆s = ∞

for all constantsK > 0, then every solution of(1.1) oscillates on[a,∞).
Proof. The proof is similar to [23, Theorem 3.2] and hence is omitted.

Next we consider the case when(1.3) holds. Now we give some sufficient conditions
when (1.3) holds, which guarantee that every solution of (1.1) oscillates or converges to zero
on [a,∞).

THEOREM 5.9. Assume thatp∆(t) ≥ 0 and that(1.3) holds. Furthermore, assume that
there exists a positive functionδ such that(5.1) holds, and

(5.10)
∫

∞

a

1

p(t)

∫ t

a

q(s)∆s∆t = ∞.

Then every solution of equation(1.1) is oscillatory or converges to zero on[a,∞).
THEOREM 5.10. Assume thatp∆(t) ≥ 0 and that(1.3) holds. Furthermore, assume

that there exists a positive functionδ such that(5.9) and (5.10) hold. Then every solution of
equation(1.1) is oscillatory or converges to zero on[a,∞).

REMARK 5.11.Note that our results also can be extended to the more generalequation

(p(t)x∆(t))∆ + q(t) |x(σ(t))|γ sgn (x(σ(t))) = 0 for t ∈ [a, b],

whereγ > 0 to cover the case whenγ is even.
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[18] L. ERBE, A. PETERSON, AND P.ŘEHÁK , Comparison theorems for linear dynamic equations on time scales,
J. Math. Anal. Appl., 275 (2002), pp. 418–438.

[19] L. ERBE, A. PETERSON, AND S. H. SAKER, Oscillation criteria for second-order nonlinear dynamic equa-
tions on time scales, J. London Math. Soc., 67 (2003), pp. 701–714.

[20] S. HILGER, Analysis on measure chains — a unified approach to continuousand discrete calculus, Results
Math., 18 (1990), pp. 18–56.

[21] S. HUFF, G. OLUMOLODE, N. PENNINGTON, AND A. PETERSON, Oscillation of an Euler–Cauchy dynamic
equation, in Proceedings of the Fourth International Conference on Dynamical Systems and Differential
Equations, Wilmington, 2002, pp. 24–27.

[22] I. V. K AMENEV, An integral criterion for oscillation of linear differential equations of second order, Mat.
Zametki, 23 (1978), pp. 249–251.

[23] S. H. SAKER, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput., 148 (2004),
pp. 81–91.

[24] J. S. W. WONG, On the generalized Emden–Fowler equation, SIAM Rev., 17 (1975), pp. 339–360.


