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ABSTRACT. We study the asymptotic behavior of nonoscillatory solutions of nonlinear dynamic

equations on time scales. More precisely, all eventually monotone solutions of nonlinear dynamic

equations can be divided into several disjoint subsets by means of necessary and sufficient integral

conditions. Examples are given to illustrate some of our main results.
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1. Introduction

This paper deals with the asymptotic behavior of solutions of the nonlinear dy-

namic equation

(1.1)
[

a(t)|x∆(t)|α sgn x∆
]∆

= b(t)|xσ(t)|β sgn xσ(t),

where a, b ∈ Crd ([t0,∞)T, R+) and α, β > 0. A time scale, denoted by T, is a closed

subset of real numbers. Throughout this paper, we assume that T is unbounded above.

By a solution we mean a delta differentiable function x satisfying equation (1.1) such

that
[

a(t)|x∆(t)|α sgn x∆
]

∈ C1
rd, where the set of rd-continuous functions and the

set of functions that are differentiable and whose derivative is rd-continuous will be

denoted by Crd and C1
rd, respectively. We also assume that x(t) is a proper solution

on [t0, T )T, i.e., x(t) exists and x(t) 6= 0 on [t0, T )T. Whenever we write t ≥ t1, we

mean that t ∈ [t1,∞)T := [t1,∞) ∩ T.

Equation (1.1) reduces to the nonlinear differential equation, see Cecchi, Došlá,

Marini and Vrkoč [8], and Tanigawa [15],

(1.2) [a(t)|x′(t)|α sgn x′] = b(t)|x(t)|β sgn x

when T = R, and the nonlinear difference equation, see Cecchi, Došlá, Marini [9],

(1.3) ∆(an|∆xn|
α sgn ∆xn) = bn|xn+1|

β sgn xn+1

when T = Z.
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Such dynamic equations are studied by Akın-Bohner in [1, 2, 3], by Erbe, Baoguo

and Peterson in [12] and Akın-Bohner, Bohner, and Saker in [4]. Such studies are mo-

tivated by the dynamics of positive radial solutions of reaction-diffusion (flow through

porous media, nonlinear elasticity) problems, see Diaz [11] and Grossinho and Omari

[13]. Our results and methods extend those stated and used in the continuous case

in [1] and [8], and in the discrete case in [9, 10], see also references therein.

Our goal is to investigate the asymptotic behavior of nonoscillatory solutions

of (1.1) by certain types of integrals depending on a, b, α and β. In Section 2, we

classify eventually monotone solutions in two types, introduce the sub-classes that

are obtained by using equation (1.1) and show the existence and non-existence of

nonoscillatory solutions of (1.1). In Section 3, we investigate the convergence and

divergence of more general integrals and use those results in Section 4 to show the

co-existence of solutions of (1.1) in these sub-classes when α > β, α < β and α = β.

Finally, we construct examples to highlight some of our results in the last section.

An excellent introduction of time scales calculus can be found in [6] and [7] by

Bohner and Peterson. Therefore, we only give the preliminary results that we use in

our proofs.

Theorem 1.1 ([6, Theorem 1.75]). If f ∈ Crd and t ∈ T
κ, then

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

Theorem 1.2 ([6, Theorem 1.77]). If a, b ∈ T and f, g ∈ Crd,then
∫ b

a

f(σ(t))g∆(t) = (fg)(b) − (fg)(a) −

∫ b

a

f∆(t)g(t)∆t;

or
∫ b

a

f(t)g∆(t) = (fg)(b) − (fg)(a) −

∫ b

a

f∆(t)g(σ(t))∆t.

Theorem 1.3 ([6, Theorem 1.90]). Let f : R 7→ R be continuously differentiable and

suppose g : T 7→ R is delta differentiable. Then f ◦ g : T 7→ R is delta differentiable

and the formula

(f ◦ g)∆(t) =

{
∫ 1

0

f ′
(

g(t) + hµ(t)g∆(t)
)

dh

}

g∆(t)

holds.

Theorem 1.4. [6, Theorem 1.98] Assume ν : T −→ R is strictly increasing and

T̃ = ν(T) is a time scale. If f : T −→ R is an rd-continuous function and ν is

differentiable with rd-continuous derivative, then for a, b ∈ T

∫ b

a

f(t)ν∆(t)∆t =

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)∆̃s.
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Theorem 1.5 (Integral Minkowski Inequality) [5, Theorem 2.1]). Let (X, M , µ∆) and

(Y, L , ν∆) be time scale measure spaces and let u, v and f be nonnegative functions

on X,Y, and X × Y , respectively. If p ≥ 1, then

[
∫

X

(
∫

Y

f(x, y)v(y)dν∆(y))

)p

u(x)dµ∆(x)

]
1

p

(1.4)

≤

∫

Y

(
∫

X

f p(x, y)u(x)dµ∆(x)

)
1

p

v(y)dν∆(y)

holds provided all integrals in (1.4) exist. If 0 < p < 1 and

(1.5)

∫

X

(
∫

Y

fvdν∆

)p

udµ∆ > 0,

∫

Y

fvdν∆ > 0

then (1.4) is reversed. If f < 0 and (1.5) and

∫

X

f pudµ∆ > 0

hold, then (1.4) is reversed, as well.

Theorem 1.6 (Hölder’s Inequality) [5, Theorem 1.3]). For p 6= 1, define q = p/(p −

1). Let (E, F , µ∆) be a time scale measure space. Assume w, f, g are nonnegative

functions such that wf p, wgp, w(f + g)p are ∆ − integrable on E. If p > 1, then

(1.6)

∫

E

w(t)f(t)g(t)dµ∆(t) ≤

(
∫

E

w(t)f p(t)dµ∆(t)

)
1

p
(
∫

E

w(t)gq(t)dµ∆(t)

)
1

q

.

If 0 < p < 1 and
∫

E
wgqdµ∆ > 0, or if p < 0 and

∫

E
wf pdµ∆ > 0, then (1.6) is

reversed.

We also use the algebraic inequality

(1.7) (a + b)p ≤ 2p(ap + bp)

for a ≥ 0, b ≥ 0 and p > 0, see [14].

It is shown by Akın-Bohner in [1] that any nontrivial solutions of equation (1)

on [t0,∞)T is eventually monotone and belongs to one of the following classes:

M+ := {x is a solution of (1) : ∃ t1 ≥ t0 such that x(t)x∆(t) > 0 for t ≥ t1},

M− := {x is a solution of (1) : x(t)x∆(t) < 0 for t ≥ t0}.

For equation (1.1), M+ can be empty when T = R, see [1]. However, it is not

true when T = Z, see [9]. In addition, M− can be empty when T = R, see [1], while

this is an open problem in the case T = Z.
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In this paper, we study the solutions of (1.1) in M+ and M− described by the

following integrals:

J1 = lim
T→∞

∫ T

t0

(

1

a(t)

)
1

α
(
∫ t

t0

b(s)∆s

)

1

α

∆t,

K1 = lim
T→∞

∫ T

t0

b(t)

(

∫ t

t0

(

1

a(s)

)
1

α

∆s

)β

∆t,

J2 = lim
T→∞

∫ T

t0

(

1

a(t)

)
1

α
(
∫ T

σ(t)

b(s)∆s

)

1

α

∆t,

K2 = lim
T→∞

∫ T

t0

b(t)

(

∫ T

σ(t)

(

1

a(s)

)
1

α

∆s

)β

∆t,

J3 = lim
T→∞

∫ T

t0

(

1

a(t)

)
1

α

∆t,

K3 = lim
T→∞

∫ T

t0

b(t)∆t.

We now present the convergence and divergence relationships between above

integrals. One can prove the followings similar to [2, Lemma 2.1].

Lemma 1.7. For the integrals J1, K1, J2, K2, J3 and K3, we have the following rela-

tionships:

(a) If J1 < ∞, then J3 < ∞.

(b) If K1 < ∞, then K3 < ∞.

(c) If J1 = ∞, then J3 = ∞ or K3 = ∞.

(d) If K1 = ∞, then J3 = ∞ or K3 = ∞.

(e) J1 < ∞ and K1 < ∞ if and only if J3 < ∞ and K3 < ∞,

(f) If J2 < ∞, then K3 < ∞.

(g) If K2 < ∞, then J3 < ∞.

(h) If J2 = ∞, then J3 = ∞ or K3 = ∞.

(i) If K2 = ∞, then J3 = ∞ or K3 = ∞.

(j) J2 < ∞ and K2 < ∞ if and only if J3 < ∞ and K3 < ∞.

2. Classification of Nonoscillatory Solutions of (1.1)

In this section, we obtain the existence and non-existence of solutions of (1.1) in

M+ and M− depending on J1, K1, and J2, K2, respectively.

For the convenience, we denote

(2.1) x[1] = a(t)|x∆|α sgn x∆,
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so-called the quasi-derivative of x. Let x(t) be a proper solution of (1) in M+ on

[t0,∞)T, and without loss of generality assume that x(t) > 0 for [t0,∞)T. By equation

(1.1) we have that x[1](t) is increasing for t ≥ t0. Then either there exists t1 ≥ t0 such

that x[1](t) > 0, t ≥ t1 or x[1](t) < 0, t ≥ t0. If x[1](t) > 0, t ≥ t1, then x∆(t) > 0

for t ≥ t1 and x[1](t) tends to a positive constant or infinity as t → ∞. Clearly, x has

a positive limit or infinite limit. Similarly, if x[1](t) < 0, t ≥ t0, then x∆(t) < 0 for

t ≥ t0 and so x[1](t) tends to a non-positive constant as t → ∞ while x(t) goes to a

non-negative constant t → ∞.

So in the light of this information, we can have the following lemmas:

Lemma 2.1. For positive real numbers c and d, M+ can be a divided into the following

sub-classes according to the asymptotic behavior of solution x of (1.1) and x[1]:

M+
B,B =

{

x ∈ M+ : lim
t→∞

|x(t)| = c, lim
t→∞

|x[1](t)| = d
}

,

M+
∞,B =

{

x ∈ M+ : lim
t→∞

|x(t)| = ∞, lim
t→∞

|x[1](t)| = d
}

,

M+
B,∞ =

{

x ∈ M+ : lim
t→∞

|x(t)| = c, lim
t→∞

|x[1](t)| = ∞
}

,

M+
∞,∞ =

{

x ∈ M+ : lim
t→∞

|x(t)| = ∞, lim
t→∞

|x[1](t)| = ∞
}

.

Lemma 2.2. For positive real numbers c and d, M− can be divided into the following

sub-classes according to the asymptotic behavior of solution x of (1.1) and x[1]:

M−

B,B =
{

x ∈ M− : lim
t→∞

|x(t)| = c, lim
t→∞

|x[1](t)| = d
}

,

M−

B,0 =
{

x ∈ M− : lim
t→∞

|x(t)| = c, lim
t→∞

|x[1](t)| = 0
}

,

M−

0,B =
{

x ∈ M− : lim
t→∞

|x(t)| = 0, lim
t→∞

|x[1](t)| = d
}

,

M−

0,0 =
{

x ∈ M+ : lim
t→∞

|x(t)| = 0, lim
t→∞

|x[1](t)| = 0
}

.

In the literature, any eventually nontrivial solution x ∈ M+ is called regularly

(weakly) increasing if at least one of limt→∞ |x(t)|, limt→∞ |x[1](t)| exists finitely. Oth-

erwise, it is called a strongly increasing solution. Similarly, a solution in M−

0,B is called

regularly (weakly) decaying while a solution in M−

0,0 is called strongly decaying.

The following theorem gives us the existence of proper solutions of (1.1) in sub-

classes of M+ based on the integrals J1 and K1.

Theorem 2.3. For solutions of (1.1) in M+, we have the followings:

(a) J1 < ∞ and K1 < ∞ if and only if M+
B,B 6= ∅.

(b) J1 < ∞ and K1 = ∞ if and only if M+
B,∞ 6= ∅.

(c) If M+
∞,B 6= ∅, then J1 = ∞ and K1 < ∞.

(d) If J1 = K1 = ∞, then every solution in M+ belongs to M+
∞,∞.
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Proof. (a) Suppose that there exists a solution of (1.1) in M+
B,B . Without loss of

generality we assume that x(t) > 0 for t ≥ t1. Then x[1](t) is increasing for t ≥ t1. By

[2, Theorem 3.1], if x has a finite limit, then J1 < ∞. So it is enough to prove that

K1 < ∞. Since x[1](t) is increasing for t ≥ t1, x[1](t) ≥ M , where x[1](t1) = M ∈ R
+.

This implies that

x∆(t) ≥ M
1

α

(

1

a(t)

)
1

α

, t ≥ t1.

Integrating the last inequality from t1 to t yields

x(t) > M
1

α

∫ t

t1

(

1

a(s)

)
1

α

∆s, t ≥ t1

or

xσ(t) > M
1

α

∫ t

t1

(

1

a(s)

)
1

α

∆s, t ≥ t1(2.2)

by the monotonicity of x. Taking the βth power of both sides of (2.2) and multiplying

the resulting by b yield

(xσ(t))β b(t) > M
β
α b(t)

[

∫ t

t1

(

1

a(s)

)
1

α

∆s

]β

, t ≥ t1.

From (1.1) we get

[

x[1](t)
]∆

> M
β
α b(t)

[

∫ t

t1

(

1

a(s)

)
1

α

∆s

]β

, t ≥ t1.

Finally, integrating the last inequality from t1 to t yields

x[1](t) > M
β
α

∫ t

t1

b(s)

[

∫ s

t1

(

1

a(τ)

)
1

α

∆τ

]β

∆s, t ≥ t1.(2.3)

Since x[1] has a finite limit, K1 < ∞ from the above inequality.

Conversely, suppose that J1 < ∞ and K1 < ∞. Without loss of generality assume

that x(t) > 0 for t ≥ t1. By [2, Theorem 3.1], there exists a solution x of (1.1) such

that limt→∞ x(t) = c, where 0 < c < ∞. So it is enough to show that x[1](t) converges

to a finite number as t → ∞. Since x(t) has a finite limit, there exists t2 ≥ t1 such

that xσ(t) < c for t ≥ t2. Integrating equation (1.1) from t2 to t gives

x[1](t) = x[1](t2) +

∫ t

t2

b(s) (xσ(s))β ∆s < x[1](t2) + cβ

∫ t

t2

b(s)∆s.(2.4)

By Lemma 1.7(b), K3 < ∞. Therefore, taking the limit of both sides of (2.4) as

t → ∞ proves the assertion.

(b) Suppose that there exists a solution x of (1.1) in M+
B,∞. It is enough to show

that K1 = ∞ since we show in Theorem 2.3(a) that if there exists a bounded solution

of (1.1), then J1 < ∞. By Lemma 1.1(b), it is enough to show that K3 = ∞. Without
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loss of generality, we assume that x(t) > 0 for t ≥ t1. Integrating equation (1) from

t1 to t yields

x[1](t) = x[1](t1) +

∫ t

t1

b(s) (xσ(s))β ∆s ≤ x[1](t1) + (xσ(t))β

∫ t

t1

b(s)∆s, t ≥ t1.

Taking the limit of both sides of the inequality above as t → ∞ gives us that K3 = ∞.

Conversely, suppose that J1 < ∞ and K1 = ∞. By Theorem 2.3(a), we have

the existence of a bounded solution x of (1.1) in M+. By the estimate (2.3) and

the divergence of K1, we obtain that x[1] has an infinite limit. So this completes the

proof.

(c) Suppose that there exists a solution of (1.1) in M+
∞,B. By [2, Corollary 3.1],

J1 = ∞. So it suffices to prove that K1 < ∞ . The proof is very similar to the proof

of Theorem 2.3(a). So from estimate (2.3) and since x[1] has a finite limit, we obtain

that K1 < ∞.

(d) It follows from Theorem 2.3 (a).

In the following corollary, we obtain the necessary conditions for the non-existence

of solutions in sub-classes of M+ based on the integrals J1 and K1 and the proof follows

from Theorem 2.3.

Corollary 2.4. For solutions of (1.1) in M+, we have the followings:

(a) If J1 = ∞ or K1 = ∞, then M+
B,B = ∅.

(b) If J1 = ∞ or K1 < ∞, then M+
B,∞ = ∅.

(c) If J1 < ∞ or K1 = ∞, then M+
∞,B = ∅.

We finish this section by showing the existence and non-existence of solutions

of equation (1.1) in sub-classes of M−. In order to do that we define the following

integral

I = lim
T→∞

∫ T

t0

(

1

a(t)

)
1

α
(
∫ T

t

b(s)∆s

)

1

α

∆t.

The proofs of (b) and (d) below can be found in [3, Theorem 2.1, Theorem 2.3] and

[3, Theorem 2.4], respectively. So we only prove parts (a) and (c). We use Schauder-

Tychonoff fixed point theorem in order to show some of the existence of solutions in

M−.

Theorem 2.5. For solutions of (1.1) in M−, we have the followings:

(a) M−

B,B 6= ∅ if and only if I < ∞ and K2 < ∞.

(b) M−

0,B 6= ∅ if and only if K2 < ∞.

(c) If I < ∞ and K2 = ∞, then M−

B,0 6= ∅

(d) If J2 = K2 = ∞, then every solution in M− belongs to M−

0,0.
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Proof. (a) Suppose that M−

B,B 6= ∅. Then for c > 0 and d > 0, there exists a solution

x ∈ M− of (1.1) such that |x(t)| → c and |x[1](t)| → d as t → ∞. By [1, Theorem

4.1], we have that I < ∞. So it is enough to show that K2 < ∞. Without loss of

generality, assume that x(t) > 0 for t ≥ t0. Then integrating (2.1) from σ(t) to ∞

gives us

(2.5) xσ(t) >

∫

∞

σ(t)

(

1

a(s)

)
1

α
[

−x[1](s)
]

1

α ∆s > d
1

α

∫

∞

σ(t)

(

1

a(s)

)
1

α

∆s.

Taking the βth power and multiplying both sides of (2.5) by b yield us

(2.6)
[

−x[1](t)
]∆

> d
β
α b(t)

[

∫

∞

σ(t)

(

1

a(s)

)
1

α

∆s

]β

.

Integrating (2.6) from t0 to t gives us

0 < −x[1](t0) + (d)
β
α

∫ t

t0

b(s)

[

∫

∞

σ(s)

(

1

a(τ)

)
1

α

∆τ

]β

∆s < −x[1](t).

As t → ∞ the assertion follows.

Conversely, assume that I < ∞ and K2 < ∞. Since J3 < ∞ by Lemma 1.7(g),

for arbitrarily given c > 0 and d > 0, take t1 ≥ t0 so large that

∫

∞

t1

(

1

a(t)

)
1

α
[

d + (2c)β

∫

∞

t

b(s)∆s

]
1

α

∆t ≤ c.

Define X to be the Frečhet space of all continuous functions on [t1,∞)T endowed with

the topology of uniform convergence on compact sub-intervals of [t1,∞)T. Let Ω be

the nonempty subset of X given by

Ω := {x ∈ X : c ≤ x(t) ≤ 2c, t ≥ t1}.

Define

(Fx)(t) = c +

∫

∞

t

(

1

a(s)

)
1

α
[

d +

∫

∞

s

b(τ)(xσ(τ))β∆t

]
1

α

∆s.

Clearly Ω is closed, convex and bounded. One can also show that F : Ω → Ω is a

continuous mapping and relatively compact. Then by the Schauder-Tychonoff fixed

point theorem, F has a fixed element x ∈ Ω such that x = F (x), i.e.,

x(t) = (Fx)(t) = c +

∫

∞

t

(

1

a(s)

)
1

α
[

d +

∫

∞

s

b(τ)(xσ(τ))β∆t

]
1

α

∆s.(2.7)

So by (2.7), we have x∆(t) < 0 for [t1,∞)T, i.e., x(t)x∆(t) < 0 on [t1,∞)T. Taking

the limit as t → ∞ proves the assertion.

(c) Suppose that I < ∞ and K2 = ∞. By [1, Theorem 4.1], we have that there

exists a solution x of (1.1) such that |x(t)| → c as t → ∞. So we only show that x[1]

has a zero limit. Since K2 = ∞, by Lemma 1.7(i), J3 = ∞ or K3 = ∞. But since
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I < ∞ implies that J2 < ∞, we have that K3 < ∞ by Lemma 1.7(f). Hence J3 = ∞.

Therefore by [3, Lemma 1.3], the proof is complete.

The following corollary gives us the non-existence of solutions of (1) in sub-classes

of M−.

Corollary 2.6. For solutions of (1.1) in M−, we have the following results:

(a) M−

B,B = ∅ if and only if I = ∞ or K2 = ∞.

(b) M−

0,B = ∅ if and only if K2 = ∞.

(c) Let β ≥ α. M−

0,0 = ∅ if I < ∞ or K2 < ∞.

(d) Let β ≥ α. If J2 = ∞ or K2 < ∞, then M−

B,0 = ∅.

Proof. (a) and (b) immediately follow from Theorem 2.5(a) and (b), respectively. The

part (c) was proved in [3, Theorem 2.2]. For part (d), non-existence of such a solution

of (1.1) can be found in [1, Theorem 4.1] and limit behavior of x[1] can be shown with

the similar idea as in [3, Theorem 2.2(ii)].

3. Integral Relations

In this section, we introduce more general integrals than Ji and Ki, i = 1, 2. The

goal is to obtain not only integral relations between these integrals but also some

preliminary results in order to investigate the co-existence of solutions in M+ and

M−.

Let r, q ∈ Crd ([t0,∞)T, R+) and λ, γ > 0. Define

(3.1) Lλ(r, q) = lim
T→∞

∫ T

t0

q(t)

(
∫ t

t0

r(s)∆s

)λ

∆t

and

(3.2) Mγ(r, q) = lim
T→∞

∫ T

t0

r(t)

(
∫ T

σ(t)

q(s)∆s

)

1

γ

∆t.

We can rewrite the integrals J1, J2, K1 and K2 by using (3.1) and (3.2) as follows:

J1 = L 1

α
(b, A), J2 = Mα(A, b), K1 = Lβ(A, b), K2 = M 1

β
(b, A),

where A =
(

1
a

)
1

α . It is clear that if

(3.3) lim
T→∞

∫ T

t0

q(t)∆t = ∞,

then

Lλ(r, q) = Mγ(r, q) = ∞.

The following follows from Theorem 1.2.

Lemma 3.1. If λ = γ = 1, then L1(r, q) = M1(r, q).
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The following lemmas show the convergence and divergence of (3.1) and (3.2) by

using λ and γ.

Lemma 3.2. Let λ = γ ≤ 1. If Mλ(r, q) = ∞, then  Lλ(r, q) = ∞.

Proof. Let p = 1
λ
. So Lλ(r, q) and Mλ(r, q) can be rewritten as

L 1

p
(r, q) = lim

T−→∞

∫ T

t0

q(t)

(
∫ t

t0

r(s)∆s

)

1

p

∆t,

M 1

p
(r, q) = lim

T−→∞

∫ T

t0

r(t)

(
∫ T

σ(t)

q(s)∆s

)p

∆t.

Set

r(t, s) =

{

0; s ≤ σ(t)

r(t); s > σ(t).

Then we have

[
∫ T

t0

r(t)

(
∫ T

σ(t)

q(s)∆s

)p

∆t

]

1

p

=

[
∫ T

t0

(
∫ T

σ(t)

(r(t))
1

p q(s)∆s

)p

∆t

]

1

p

=

[
∫ T

t0

(
∫ T

t0

(r(t, s))
1

p q(s)∆s

)p

∆t

]

1

p

≤

∫ T

t0

q(s)

(
∫ T

t0

r(t, s)∆t

)

1

p

∆s

=

∫ T

t0

q(s)

(
∫ s

t0

r(t)∆t

)
1

p

∆s,

where u = 1, f = r
1

p and v = q in Theorem 1.5. Taking limit as T → ∞ completes

the proof.

Lemma 3.3. Let λ = γ ≥ 1. If Lλ(r, q) = ∞, then Mλ(r, q) = ∞.

Proof. Suppose that Lλ(r, q) = ∞ and λ ≥ 1. Let

q(t, s) =

{

0; s ≥ t

q(t); s < t.

Then we have
[

∫ T

t0

q(t)

(
∫ t

t0

r(s)∆s

)λ

∆t

]
1

λ

=

[

∫ T

t0

(
∫ t

t0

(q(t))
1

λ r(s)∆s

)λ

∆t

]
1

λ

=

[

∫ T

t0

(
∫ T

t0

(q(t, s))
1

λ r(s)∆s

)λ

∆t

]
1

λ

≤

∫ T

t0

r(s)

(
∫ T

t0

q(t, s)∆t

)

1

λ

∆s

=

∫ T

t0

r(s)

(
∫ T

σ(s)

q(t)∆t

)

1

λ

∆s,

where f = q
1

λ , v = r and u = 1 in Theorem 1.5. As T → ∞, the assertion follows.
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Now we will obtain similar results for λ 6= γ. But in order to do that we need

the following two lemmas.

Lemma 3.4. Let

(3.4) QT (t) =

∫ T

t

q(s)∆s.

If η < 1 and

lim
T→∞

∫ T

t0

q(s)∆s < ∞,

then

lim
T−→∞

∫ T

t0

−Q∆
T (t)

[QT (σ(t)]η
∆t < ∞.

Proof. Set ν(t) = −QT (t) and f(t) = 1
[QT (σ(t)]η

. Since −QT (t) is increasing on [t0, T )T

and f ∈ Crd(T, R) on [t0, T )T, by Theorem 1.4, we have
∫ T

t0

−Q∆
T (t)

[QT (σ(t))]η
∆t =

∫ 0

−

R T
t0

q(s)∆s

dt

[QT ((−QT )−1(t))]η
for t ∈ Range(QT ).

So
∫ T

t0

−Q∆
T (t)

[QT (σ(t))]η
∆t =

∫ 0

−

R T
t0

q(s)∆s

dt

(−t)η = lim
b→0−

1

1 − η

[

(−b)−η−1 −

(
∫ T

t0

q(s)ds

)]−η+1

= −
1

1 − η

[
∫ T

t0

q(s)ds

]1−η

.

As T → ∞, the assertion follows, in which ν(t) = −QT (t) and f(t) = 1
[QT (σ(t)]η

in

Theorem 1.4.

Lemma 3.5. Let

R1(t) = 1 +

∫ t

t0

r(s)∆s.

If η > 1, then
∫

∞

t0

R∆
1 (t)

Rη
1(t)

∆t < ∞.

Proof. Set ν(t) = R1(t) and f(t) = 1
R

η
1
(t)

in Theorem 1.4. Since R1(t) is strictly

increasing on [t0, T )T and f ∈ Crd([t0, T )T, R) by Theorem 1.4, we have

∫ T

t0

R∆
1 (t)

Rη
1(t)

∆t =

∫ 1+
R T

t0
r(s)∆s

1

dt
[

R1(R−1
1 (t))

]η for t ∈ Range(R1(t)).

So we have
∫ T

t0

R∆
1 (t)

Rη
1(t)

∆t =

∫ 1+
R T

t0
r(s)∆s

1

dt

tη
=

1

1 − η

[

1 −

(

1 +

∫ T

t0

r(s)∆s

)−η+1
]

.

As T → ∞, the assertion follows.

Lemma 3.6. Let γ > λ. If Lλ(r, q) = ∞, then Mγ(r, q) = ∞.
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Proof. Suppose that γ > λ. If (3.3) holds, the assertion follows. Since Lλ(r, q) = ∞,

we can assume

(3.5) lim
T→∞

∫ T

t0

r(t)∆t = ∞ and lim
T→∞

∫ T

t0

q(t)∆t < ∞.

Denote

R1(t) = 1 + R(t),

where

(3.6) R(t) =

∫ t

t0

r(s)∆s.

Consider two cases:

(i) γ ≥ 1 and (ii) 0 < γ < 1

Case (i): Let t1 ≥ t0 be such that R(t) > 1 for t ≥ t1. Since  Lλ(r, q) = ∞, we have
∫ T

t1

q(t)

(
∫ t

t0

r(s)∆s

)γ

∆t ≥

∫ T

t1

q(t)

(
∫ t

t0

r(s)∆s

)λ

∆t.

As T → ∞, the right hand side goes to infinity, so does the left hand side. Then by

Lemma 3.3, we have Mγ(r, q) = ∞. This completes Case (i).

Case (ii): By Theorem 1.2, we have
∫ T

t0

q(t)Rλ
1 (t)∆t = Q(t0) +

∫ T

t0

(

Rλ
1 (t)

)∆
QT (σ(t))∆t.

By Theorems 1.2, 1.3, and 1.6, we have
∫ T

t0

q(t)Rλ
1 (t)∆t = QT (t0) +

∫ T

t0

{
∫ 1

0

λ
[

R1(t) + hµ(t)R∆
1 (t)

]λ−1
dh

}

R∆
1 (t)QT (σ(t))∆t

≤ QT (t0) +

∫ T

t0

λ [R1(t)]λ−1 R∆
1 (t)QT (σ(t))∆t

≤ QT (t0) + λ

[
∫ T

t0

R∆
1 (t)Q

1

γ

T (σ(t))∆t

]γ [∫ T

t0

R∆
1 (t) (R1(t))

λ−1

1−γ ∆t

]1−γ

= QT (t0) + λ

[
∫ T

t0

R∆
1 (t)Q

1

γ

T (σ(t))∆t

]γ
[

∫ T

t0

R∆
1 (t)

[R1(t)]
1−λ
1−γ

∆t

]1−γ

.

Hence we have
∫ T

t0

q(t)Rλ
1(t)∆t ≤ QT (t0) + λ

[
∫ T

t0

R∆
1 (t)Q

1

γ

T (σ(t))∆t

]γ
[

∫ T

t0

R∆
1 (t)

[R1(t)]
1−λ
1−γ

∆t

]1−γ

.

Since
∫

∞

t0

R∆
1 (t)

[R1(t)]
1−λ
1−γ

∆t < ∞

for 1−λ
1−γ

> 1, by Lemma 3.5 the assertion follows as T → ∞.

Lemma 3.7. Let γ < λ. If Mγ(r, q) = ∞, then Lλ(r, q) = ∞
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Proof. It is clear that if (3.3) holds, there is nothing to show. So since Mγ(r, q) = ∞,

as in the proof in Lemma 3.6, we can assume (3.5) holds.

We will consider two cases:

(i) γ ≤ 1 and (ii) γ > 1.

Case (i): For t1 ≥ t0, we may suppose R(t) > 1 for t ≥ t1. Since Mγ(r, q) = ∞,

we have Lγ(r, q) = ∞ by Lemma 3.2. Hence, similar to the Case (i) in proof of

Lemma 3.6, the assertion follows.

Case (ii): By (3.4), (3.6) and Theorem 1.2, we have

∫ T

t0

r(t) (QT (σ(t))
1

γ ∆t = −

∫ T

t0

[

(QT (t))
1

γ

]∆

R(t)∆t.

Finally, Theorems 1.3 and 1.6 yield

∫ T

t0

r(t) (QT (σ(t))
1

γ ∆t =
1

γ

∫ T

t0

{
∫ 1

0

(

QT (t) + hµ(t)Q∆
T (t)

)

1−γ
γ dh

}

q(t)R(t)∆t

≤
1

γ

∫ T

t0

(QT (σ(t)))
1−γ

γ q(t)R(t)∆t

≤
1

γ

[
∫ T

t0

q(t)Rλ(t)∆t

]

1

λ

[

∫ T

t0

−
Q∆

T (t)

(QT (σ(t)))ξ
∆t

]
λ−1

λ

,

where ξ = (γ−1)λ
γ(λ−1)

< 1, w = q, f = R and g = (Qσ)
1−γ

γ in Theorem 1.6. Taking the

limit as T → ∞ and using Lemma 3.4 complete the proof.

4. Examples

In this section, we give two examples to highlight Theorem 2.5(b).

Example 4.1. Let T = R, α = 1, β = 1
4
, a(t) = 1+e−4t

2e−2t and b(t) = 4e
−7t
2 in equation

(1.1). Then we have

lim
T→∞

(
∫ T

σ(t)

A(s)ds

)β

= lim
T→∞

(
∫ T

t

2e−2s

1 + e−4s
ds

)

1

4

<
(π

2

)
1

4

and so we obtain

∫ T

t0

b(t)

(
∫ T

σ(t)

A(s)ds

)

1

4

dt =

∫ T

t0

4e
−7t
2

(
∫ T

t

2e−2s

1 + e−4s
ds

)

1

4

dt <
(π

2

)
1

4 8

7
e

−7t0
2 .

As T → ∞, we have K2 < ∞. One can also easily show that x(t) = e−2t is a solution

of
[

1 + e−4t

2e−2t
|x′| sgn x′

]

′

= 4e
−7t
2 |x|

1

4 sgn x

such that limt→∞x(t) = 0 and limt→∞ x[1](t) = −1, i.e., M−

0,B 6= ∅.
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Example 4.2. Let T = Z, α = 1, β < 1, t0 ≥ 1, an = 3
2
(3n + 1) and bn = 2(3n+1)β−1

in equation (1.1). Letting t = n and s = m gives us

∫ T

t0

b(t)

(
∫ T

σ(t)

A(s)∆s

)β

∆t =

T−1
∑

n=1

2(3n+1)β−1

(

T−1
∑

m=n+1

2

3(3m + 1)

)β

≤
2

3

T−1
∑

n=1

(

1

31−β

)n

.

Hence, we have K2 < ∞ as T → ∞ . One can show that xn = 3−n is a solution of

∆

[

3

2
(3n + 1)|∆xn| sgn ∆xn

]

= 2(3n+1)β−1|xn+1|
β sgn xn+1

such that limn→∞xn = 0 and limn→∞ x
[1]
n = −1, i.e., M−

0,B 6= ∅.

5. Conclusions

In this section, one can obtain the co-existence and non-coexistence of solutions

of (1.1) in sub-classes of M− and M+ in each of the cases α = β, α > β and α < β.

The following integral relationships among J1, K1, J2 and K2 follow directly from

Lemmas 3.1–3.3 and 3.6–3.7.

Lemma 5.1. We have the followings:

(a) If α = β = 1, then J1 = K2 and J2 = K1.

(b) If α = β ≤ 1, then J2 = ∞ =⇒ K1 = ∞ and J1 = ∞ =⇒ K2 = ∞.

(c) If α = β ≥ 1, then K1 = ∞ =⇒ J2 = ∞ and K2 = ∞ =⇒ J1 = ∞.

(d) If α > β, then K1 = ∞ =⇒ J2 = ∞ and J1 = ∞ =⇒ K2 = ∞.

(e) If α < β, then J2 = ∞ =⇒ K1 = ∞ and K2 = ∞ =⇒ J1 = ∞.

In the light of Lemma 5.1, there exist eight cases:

(C1) : J1 = J2 = K1 = K2,

(C2) : J1 = K2 = ∞, J2 < ∞, K1 < ∞,

(C3) : J1 < ∞, K2 < ∞, J2 = K1 = ∞,

(C4) : J1 < ∞, K1 < ∞, J2 < ∞, K2 < ∞,

(C5) : J1 = J2 = K2 = ∞, K1 < ∞,

(C6) : J1 = J2 = K1 = ∞, K2 < ∞,

(C7) : J1 = K1 = K2 = ∞, J2 < ∞,

(C8) : K1 = K2 = J2 = ∞, J1 < ∞.

Note that Cases (Ci), i = (1)–(4) occur for any α > 0 and β > 0 while (C5)

occurs only for α = β > 1 or α > β, (C6) occurs only for α = β > 1 or α < β, (C7)

occurs only for α < β or α = β < 1 and (C8) occurs only for α > β or α = β < 1.
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We now investigate the co-existence and co-nonexistence of solutions of (1.1) by

using the cases (Ci), i = (1)–(8) and Theorems (2.3), (2.4), (2.5) and (2.6) in the

following theorems.

Theorem 5.2. Let α = β. For solutions of equation (1.1) in M+ and M−, we have

the followings:

(a) If (C1) holds, then M+ = M+
∞,∞ and M− = M−

0,0.

(b) If (C2) holds, then M+
B,B = M+

B,∞ = ∅ and M−

B,B = M−

0,B = ∅.

(c) If (C3) holds, then M+
B,∞ 6= ∅, M+

B,B = M+
∞,B = ∅ and M−

B,B = M−

0,0 = M−

B,0 = ∅.

Therefore M− = M−

0,B.

(d) If (C4) holds, then M+
B,B 6= ∅, M+

B,∞ = M+
∞,B = ∅ and M−

0,B 6= ∅, M−

0,0 = M−

B,0 = ∅.

(e) If (C5) holds, then M+
B,B = M+

B,∞ = ∅ and M− = M−

0,0.

(f) If (C6) holds, then M+ = M+
∞,∞ and M−

B,B = M−

0,0 = M−

B,0 = ∅. Therefore,

M− = M−

0,B.

(g) If (C7) holds, then M+ = M+
∞,∞ and M−

B,B = M−

0,B = ∅.

(h) If (C8) holds, then M+
B,∞ 6= ∅, M+

B,B = M+
∞,B = ∅ and M− = M−

0,0.

Theorem 5.3. Let α > β. For solutions of equation (1.1) in M+ and M−, we have

the followings:

(a) If (C1) holds, then M+ = M+
∞,∞ and M− = M−

0,0.

(b) If (C2) holds, then M+
B,B = M+

B,∞ = ∅ and M−

B,B = M−

0,B = ∅.

(c) If (C3) holds, then M+
B,∞ 6= ∅, M+

B,B = M+
∞,B = ∅ and M−

0,B 6= ∅, M−

B,B = ∅.

(d) If (C4) holds, then M+
B,B 6= ∅, M+

B,∞ = M+
∞,B = ∅, and M−

0,B 6= ∅.

(e) If (C5) holds, then M+
B,B = M+

B,∞ = ∅ and M− = M−

0,0.

(f) If (C8) holds, then M+
∞,∞ 6= ∅, M+

B,B = ∅, M+
∞,B = ∅ and M− = M−

0,0.

Theorem 5.4. Let α < β. For solutions of equation (1.1) in M+ and M−, we have

the followings:

(a) If (C1) holds, then M+ = M+
∞,∞ and M− = M−

0,0.

(b) If (C2) holds, then M+
B,B = M+

B,∞ = ∅ and M−

B,B = M−

0,B = ∅.

(c) If (C3) holds, then M+
B,∞ 6= ∅, M+

B,B = M+
∞,B = ∅ and M−

B,B = M−

0,0 = M−

B,0 = ∅.

Therefore M− = M−

0,B.

(d) If (C4) holds, then M+
B,B 6= ∅, M+

B,∞ = M+
∞,B = ∅ and M−

0,B 6= ∅, M−

0,0 = M−

B,0 = ∅.

(e) If (C6) holds, then M+ = M+
∞,∞ and M−

B,B = M−

0,0 = M−

B,0 = ∅. Therefore,

M− = M−

0,B.

(f) If (C7) holds, then M+ = M+
∞,∞ and M−

B,B = M−

0,B = ∅.

Our goal for the entire paper has been to classify nonoscillatory solutions of (1.1)

depending on J1, K1, J2 and K2. However, we would like to indicate the following

remarks.
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Remark 5.5. When J1 = ∞ and K1 < ∞, we have to assume that

µ(t) is differentiable such that µ∆(t) ≥ 0 and aσ(t) ≥ a(t) for t ≥ t1(5.1)

to be able to obtain M+
∞,B 6= ∅, which follows from [2, Theorem 3.1] and [2, Corol-

lary 5.1]. On the other hand, in case (C2) or (C5) holds with α ≥ β, or (C2) holds

with α < β, we obtain M+
∞,B 6= ∅ as well. If T = R, then (5.1) holds automatically.

So our result corresponds with the continuous case. Of course, one can obtain that

M+
∞,B 6= ∅ by assuming both conditions

J1 = ∞, and lim
T→∞

∫ T

t0

b(t)

(
∫ t

t0

Aσ(s)∆s

)β

∆t < ∞

without (5.1) as in the discrete case, see [9].

Remark 5.6. When J1 < ∞ or K1 < ∞, we have to assume that

(5.2)

∫

∞

t1

b(t)µβ(t)

(

1

a(t)

)
β
α

∆t < ∞,

where α > β to be able to obtain M+
∞,∞ = ∅ by using [2, Theorem 3.2], Theorem 1.1,

inequality (1.7), and Lemma 1.7(b). On the other hand, if we have one of the cases

(C2), (C3), (C4), (C5) and (C8) with α > β, then M+
∞,∞ = ∅ as well. If T = R, then

(5.2) holds automatically. So our result matches with the continuous case. Of course,

one can show that M+
∞,∞ = ∅ by assuming

lim
T→∞

∫ T

t0

b(t)

(
∫ t

t0

Aσ(s)∆s

)β

∆t < ∞, α > β

without (5.2) as in the discrete case, see [9].

Another reasonable nonlinear dynamic equation is to consider

(5.3)
[

a(t)|x∆(t)|α sgn x∆
]∆

= −b(t)|xσ(t)|β sgn xσ(t)

as our new project because several questions arise. For example, what integral con-

ditions might we have in order to obtain the existence of nonoscillatory solutions of

(5.3)? And what sub-classes might occur for nonoscillatory solutions of (5.3) depend-

ing on the convergence/divergence of J3 and K3? Also what oscillation criteria do we

need for (5.3)?
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