On Nonoscillatory Solutions of Emden-Fowler Dynamic Systems on Time Scales

Özkan Öztürk1, Elvan Akın1 and İsmail Uğur Tiryaki1,2

Abstract

We study the existence and asymptotic behavior of nonoscillatory solutions of Emden-Fowler dynamic systems on time scales. In order to show the existence, we use Schauder, Knaster and Tychonoff Fixed Point Theorems. Some examples are illustrated as well.

1 Introduction

In this paper, we deal with the classification of nonoscillatory solutions of the Emden-Fowler system of first order dynamic equations

\[
\begin{cases}
x^\Delta(t) = \left(\frac{1}{a(t)}\right)^{\frac{1}{\alpha}} |y(t)|^{\frac{1}{\alpha}} \text{sgn}y(t) \\
y^\Delta(t) = -b(t) |x^\sigma(t)|^{\beta} \text{sgn}x^\sigma(t),
\end{cases}
\]

where \(\alpha, \beta > 0\) and \(a, b \in C_{rd}([t_0, \infty)_T, \mathbb{R}^+).\) Whenever we write \(t \geq t_1,\) we mean that \(t \in [t_1, \infty)_T := [t_1, \infty) \cap T.\) A time scale \(T,\) a nonempty closed subset of real numbers, is introduced perfectly by Bohner and Peterson in [7] and [8]. Throughout this paper, we assume that \(T\) is unbounded above. We call \((x, y)\) a proper solution if it is defined on \([t_0, \infty)_T\) and \(\sup\{|x(s)|, |y(s)| : s \in [t, \infty)_T\} > 0\) for \(t \geq t_0.\) A solution \((x, y)\) of (1) is said to be nonoscillatory if the component functions \(x\) and \(y\) are both nonoscillatory, i.e., either eventually positive or eventually negative. Otherwise it is said to be oscillatory. Throughout this paper without loss of generality we assume that \(x\) is eventually positive in our proofs. Our results can be obtained similarly for that \(x\) is eventually negative.

System (1) can be easily derived from the Emden Fowler dynamic equation

\[
(a(t)|x^\Delta(t)|^\alpha \text{sgn}x^\Delta(t))^\Delta + b(t)|x(t)|^\beta \text{sgn}x^\sigma(t) = 0
\]

by letting \(x = x\) and \(y = a|x^\Delta|^\alpha \text{sgn}x^\Delta\) in (2). If \(\alpha = \beta\) in (2), then it is called half-linear dynamic equations.

If \(T = \mathbb{R}\) and \(T = \mathbb{Z},\) equation (2) turns out to be Emden Fowler differential equation

\[
(a(t)|x'(t)|^\alpha \text{sgn}x'(t))' + b(t)|x(t)|^\beta \text{sgn}x(t) = 0,
\]

2010 Mathematics Subject Classification. 39A10.

Keywords and Phrases. Time scales, half-linear equations, Emden-Fowler equations, Emden-Fowler Dynamic Systems.
see [12], and Emden-Fowler difference equation
\[
\Delta (a_n|\Delta x_n|^{\alpha} sgn \Delta x_n) + b_n|x_{n+1}|^{\beta} sgn x_{n+1} = 0,
\]
see [9], respectively.

This paper is stimulated by the papers [9], [13] and [11]. The related oscillation and nonoscillation results for two and three dimensional dynamic systems are given in [6], [4], [5], and [2], respectively. The setup of this paper is as follows: In Section 1, we give preliminary lemmas playing an important role in the further sections. In Sections 2 and 3, we show the existence and asymptotic properties of nonoscillatory solutions of system (1) by using certain improper integrals and fixed point theorems. In Section 4, we obtain some conclusions. And finally, the paper is completed by some examples.

Let \(M \) be the set of all nonoscillatory solutions of system (1). One can easily show that any nonoscillatory solution \((x, y)\) of system (1) belongs to one of the following classes:

\[
M^+ := \{(x, y) \in M : x(t)y(t) > 0 \text{ eventually}\}
\]

\[
M^- := \{(x, y) \in M : x(t)y(t) < 0 \text{ eventually}\}.
\]

Lemma 1.1. [6, Lemma 2.1] Let \((x, y)\) be a solution of system (1). Then component functions \(x\) and \(y\) are themselves nonoscillatory if \((x, y)\) is a nonoscillatory solution of system (1).

Remark 1.1. Let \((x, y)\) be a nonoscillatory solution of system (1). If \(x(t)\) is nonoscillatory for \(t \geq t_0\), then the other component function \(y(t)\) is also nonoscillatory for sufficiently large \(t\).

For the convenience, let us set

\[
Y_a = \int_{t_0}^{\infty} A(t) \Delta t \quad \text{and} \quad Z_b = \int_{t_0}^{\infty} b(t) \Delta t,
\]

where \(A = (\frac{1}{a})^{\frac{1}{\alpha}}\).

The following lemma shows the sufficient conditions for oscillatory and nonoscillatory of system (1).

Lemma 1.2. (a) [6, Lemma 2.3] If \(Y_a < \infty\) and \(Z_b < \infty\), then system (1) is nonoscillatory.

(b) [6, Lemma 2.2] If \(Y_a = \infty\) and \(Z_b = \infty\), then system (1) is oscillatory.

For the next two lemmas we show when \(M^+\) and \(M^-\) can be empty.

Lemma 1.3. If \(Y_a = \infty\) and \(Z_b < \infty\), then any nonoscillatory solution \((x, y)\) of system (1) belongs to \(M^+\), i.e \(M^- = \emptyset\).

Proof. Suppose that \(Y_a = \infty\) and \(Z_b < \infty\). Proof is by contradiction. So assume that there exists a solution \((x, y)\) of system (1) such that \((x, y) \in M^-\). Without
loss of generality assume that \(x(t) > 0 \) for \(t \geq t_1 \). Then by integrating the first equation of system (1) from \(t_1 \) to \(t \) and the monotonicity of \(y \), we have

\[
x(t) = x(t_1) - \int_{t_1}^{t} A(s) \left(-y(s) \right)^{\frac{1}{\delta}} \Delta s \leq x(t_1) - (-y(t_1))^{\frac{1}{\delta}} \int_{t_1}^{t} A(s) \Delta s.
\]

As \(t \to \infty \), \(x \to -\infty \). But this contradicts to the positivity of \(x \). Note that the proof can be done without the condition \(Z_b < \infty \). However in order for nonoscillatory solutions to exist, we need the assumption \(Z_b < \infty \) by Lemma 1.2 (b).

Lemma 1.4. If \(Y_a < \infty \) and \(Z_b = \infty \), then any nonoscillatory solution \((x, y)\) of system (1) belongs to \(M^- \), i.e., \(M^+ = \emptyset \).

Proof. Suppose that \(Y_a < \infty \) and \(Z_b = \infty \). Proof is by contradiction. So assume that there exists a nonoscillatory solution \((x, y)\) of system (1) such that \(xy > 0 \) eventually. Without loss of generality, assume that \(x(t) > 0 \) for \(t \geq t_1 \). So by integrating the second equation of system (1) from \(t_1 \) to \(t \) and the monotonicity of \(x \) give us

\[
y(t) \leq y(t_1) - (x^\sigma(t_1))^{\beta} \int_{t_1}^{t} b(s) \Delta s.
\]

As \(t \to \infty \), it follows that \(y(t) \to -\infty \). But this contradicts that \(y \) is eventually positive.

The discrete version of the following lemmas can be found in [13].

Lemma 1.5. Let \((x, y)\) be a nonoscillatory solution of system (1).

(a) If \(Y_a < \infty \), then the component function \(x \) has a finite limit.

(b) If \(Y_a = \infty \) or \(Z_b < \infty \), then the component function \(y \) has a finite limit.

Proof. (a) Suppose that \(Y_a < \infty \) and \((x, y)\) is a nonoscillatory solution of system (1). Then by Lemma 1.1, \(x \) and \(y \) are themselves nonoscillatory. Without loss of generality, assume that there exists \(t_1 \geq t_0 \) such that \(x(t) > 0 \) for \(t \geq t_1 \). If \((x, y) \in M^- \), then by the first equation of system (1), \(x^\Delta(t) < 0 \) for \(t \geq t_1 \). Therefore, limit of \(x \) exists. So let us show that the assertion follows if \((x, y) \in M^+ \). From the first equation of system (1), we have \(x^{\Delta}(t) > 0 \) for \(t \geq t_1 \). Hence two things might happen: The limit of the component function \(x \) exists or blows up. Now let us show that \(\lim_{t \to \infty} x(t) = \infty \) cannot happen. Assume \(x(t) \to \infty \) as \(t \to \infty \). By integrating the first equation of system (1) from \(t_1 \) to \(t \) and using the monotonicity of \(y \) yield

\[
x(t) \leq x(t_1) + y^{\frac{1}{\delta}}(t_1) \int_{t_1}^{t} A(s) \Delta s.
\]

Taking the limit as \(t \to \infty \), it follows that \(Y_a = \infty \), which is a contradiction. This completes the proof.
(b) Suppose that $Y_a = \infty$ or $Z_b < \infty$ and (x, y) is a nonoscillatory solution of system (1). The case $Z_b < \infty$ can be proved similar to part (a). For $Y_a = \infty$, assume that x is eventually positive. Then by using the similar way for the proof of Lemma 1.3, it can be shown that y is eventually positive. Then by the second equation of system (1), it follows that y has a finite limit.

In the following lemmas, we find upper and lower bounds for the component function x of a nonoscillatory solution (x, y) of system (1).

Lemma 1.6. Let $Y_a < \infty$. If (x, y) is a nonoscillatory solution of system (1), then there exist $c, d > 0$ and $t_1 \geq t_0$ such that

\[c \int_t^\infty A(s) \Delta s \leq x(t) \leq d \]

or

\[-d \leq x(t) \leq -c \int_t^\infty A(s) \Delta s \]

for $t \geq t_1$.

Proof. Suppose that $Y_a < \infty$ and (x, y) is a nonoscillatory solution of system (1). Without loss of generality, let us assume that x is eventually positive. Then by Lemma 1.5 (a), we have $x(t) \leq d$ for $t \geq t_1$. If $y(t) > 0$ for $t \geq t_1$, then x is eventually increasing by the first equation of system (1). So for large t, the assertion follows. If $y(t) < 0$ for $t \geq t_1$, then integrating the first equation of system (1) from t to ∞ and the monotonicity of y give

\[x(t) = x(\infty) + \int_t^\infty A(s)(-y(s))^{\frac{1}{\alpha}} \Delta s \geq \int_t^\infty A(s)(-y(s))^{\frac{1}{\alpha}} \Delta s \]

\[\geq (-y(t_1))^{\frac{1}{\alpha}} \int_t^\infty A(s) \Delta s. \]

Setting $c = \left(-y(t_1)\right)^{\frac{1}{\alpha}}$ on the last inequality proves the assertion. Assuming x is eventually negative gives the second part of the proof.

Lemma 1.7. Let $Y_a = \infty$ and $Z_b < \infty$. If (x, y) is a nonoscillatory solution of system (1), then there exist $k_1, k_2 > 0$ and $t_1 \geq t_0$ such that

\[k_1 \leq x(t) \leq k_2 \int_{t_1}^t A(s) \Delta s \]

or

\[-k_2 \int_{t_1}^t A(s) \Delta s \leq x(t) \leq k_1 \]

for $t \geq t_1$.

Proof. Suppose that $Y_a = \infty$ and $Z_b < \infty$, and (x, y) is a nonoscillatory solution of system (1). Then by Lemma 1.1, x and y are themselves nonoscillatory. Without loss of generality let us assume that $x(t) > 0$ for $t \geq t_1$. Then by Lemma 1.3, (x, y) must be in M^+. Hence, there is a constant $k_1 > 0$ such that $x(t) \geq k_1$ for $t \geq t_1$. Integrating the first equation of system (1) and the monotonicity of y give

$$x(t) = x(t_1) + \int_{t_1}^{t} A(s)y^{\frac{1}{\alpha}}(s)\Delta s \leq x(t_1) + y^{\frac{1}{\alpha}}(t_1) \int_{t_1}^{t} A(s)\Delta s$$

$$= \left(\frac{x(t_1)}{\int_{t_1}^{t} A(s)\Delta s} + y^{\frac{1}{\alpha}}(t_1) \right) \int_{t_1}^{t} A(s)\Delta s.$$

Since $Y_a = \infty$, we can choose $t_2 \geq t_1$ such that

$$\int_{t_2}^{t} A(t)\Delta t \geq 1 \text{ for } t \geq t_2.$$

So this implies that

$$x(t) \leq \left(x(t_1) + y^{\frac{1}{\alpha}}(t_1) \right) \int_{t_1}^{t} A(s)\Delta s$$

and the assertion follows by letting $k_2 = x(t_1) + y^{\frac{1}{\alpha}}(t_1)$. Assuming that x is eventually negative proves the second part of the proof.

2 The Case $Y_a = \infty$ and $Z_b < \infty$

In this section, we show that M^+ can be divided into some sub-classes under the case $Y_a = \infty$. By Lemma 1.2(b), in order to obtain the existence of nonoscillatory solutions, we also have to assume $Z_b < \infty$. So throughout this section, we suppose that $Y_a = \infty$ and $Z_b < \infty$ hold. Then by Lemma 1.3, $(x, y) \in M^+$. Without loss of generality we suppose that $x > 0$ eventually. Then by the second equation of system (1), y is positive and decreasing eventually. In addition to that, by using the first equation of system (1) and taking Lemma 1.5(b) into consideration we have that $x(t) \to c$ or ∞, and $y(t) \to d$ or 0 as $t \to \infty$ for

$$0 < c < \infty \text{ and } 0 < d < \infty.$$

Lemma 2.1. If $x(t) \to c$, then $y(t) \to 0$ as $t \to 0$ for $c < 0 < \infty$.

Proof. Suppose that $x(t) \to c$ as $t \to \infty$. Assume the contrary. So $y(t) \to d$ for $0 < d < \infty$ as $t \to \infty$. Then since $y(t) > 0$ and decreasing eventually, there exists $t_1 \geq t_0$ such that $y(t) \geq d$ for $t \geq t_1$. By the first equation of system (1), we have

$$x^{\Delta}(t) = A(t)y^{\frac{1}{\alpha}}(t) \geq A(t)d^{\frac{1}{\alpha}} \text{ for } t \geq t_1.$$

Integrating (3) from \(t_1 \) to \(t \) yields

\[x(t) \geq x(t_1) + d^\frac{1}{\alpha} \int_{t_1}^{t} A(s) \Delta s. \]

As \(t \to \infty \), this gives us a contradiction to the fact \(x(t) \to c \). So the assertion follows.

In the light of Lemma 2.1 and the explanation above, we have the following lemma.

Lemma 2.2. For \(0 < c < \infty \) and \(0 < d < \infty \), any nonoscillatory solution in \(M^+ \) must belong to one of the following sub-classes:

\[
\begin{align*}
M_{B,0}^+ &= \left\{ x \in M^+ : \lim_{t \to \infty} |x(t)| = c, \quad \lim_{t \to \infty} |y(t)| = 0 \right\}, \\
M_{\infty,B}^+ &= \left\{ x \in M^+ : \lim_{t \to \infty} |x(t)| = \infty, \quad \lim_{t \to \infty} |y(t)| = d \right\}, \\
M_{\infty,0}^+ &= \left\{ x \in M^+ : \lim_{t \to \infty} |x(t)| = \infty, \quad \lim_{t \to \infty} |y(t)| = 0 \right\}.
\end{align*}
\]

In the literature, solutions in \(M_{B,0}^+ \), \(M_{\infty,B}^+ \) and \(M_{\infty,0}^+ \) are called subdominant solutions, dominant solutions and intermediate solutions, respectively.

The following theorems show the existence of nonoscillatory solutions in sub-classes mentioned above by using the improper integrals:

\[
J_\alpha = \int_{t_0}^{\infty} b(t) \left(\int_{t}^{\infty} A(s) \Delta s \right)^{\frac{1}{\alpha}} \Delta t. \\
K_\beta = \int_{t_0}^{\infty} b(t) \left(\int_{t_0}^{\sigma(t)} A(s) \Delta s \right)^{\beta} \Delta t.
\]

Theorem 2.1. \(M_{B,0}^+ \neq \emptyset \) if and only if \(J_\alpha < \infty \).

Proof. Suppose that \(M_{B,0}^+ \neq \emptyset \). Then there exists \((x,y) \in M^+ \) such that \(|x(t)| \to c > 0 \) and \(|y(t)| \to 0 \) as \(t \to \infty \). Without loss of generality let us assume that \(x(t) > 0 \) for \(t \geq t_1 \). Integrating the second equation of system (1) from \(t \) to \(\infty \) gives us

\[y(t) = \int_{t}^{\infty} b(s) (x^\sigma(s))^{\beta} \Delta s. \]

Solving the first equation of system (1) for \(y \), substituting the resulting equation into (4) and by the monotonicity of \(y \), we obtain

\[x^\Delta(t) \geq A(t) x^{\frac{\sigma}{\alpha}}(t) \left(\int_{t}^{\infty} b(s) \Delta s \right)^{\frac{1}{\alpha}}. \]
Integrating (5) from t_1 to t gives

$$x(t) \geq x(t_1) + \int_{t_1}^{t} A(s)x^\beta(s) \left(\int_{s}^{\infty} b(\tau) \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s$$

$$\geq x^\beta(t_1) \int_{t_0}^{t} A(s) \left(\int_{s}^{\infty} b(\tau) \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s.$$

As $t \to \infty$, the assertion follows.

Conversely, suppose that $J_\alpha < \infty$. Choose $t_1 \geq t_0$ so large that

$$\int_{t_1}^{\infty} A(t) \left(\int_{t}^{\infty} b(s) \Delta s \right)^{\frac{1}{\alpha}} \Delta t < \left(\frac{c}{2} \right) \frac{1}{c^\alpha} \tag{6}$$

for arbitrarily given $c > 0$. Let X be the set of all bounded, continuous, real valued functions with the norm $\|x\| = \sup \{ |x(t)| \}$. It is clear that X is a Banach Space, see [10]. Let us define a subset Ω of X such that

$$\Omega := \{ x \in X : \frac{c}{2} \leq x(t) \leq c, \quad t \geq t_1 \}.$$

It is clear that X is closed, bounded and convex. Define an operator $F : \Omega \to X$ such that

$$\begin{align*}
(Fx)(t) &= c - \int_{t}^{\infty} A(s) \left(\int_{s}^{\infty} b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s
\end{align*}$$

for $t \geq t_1$. \hspace{1cm} (7)

By inequality (6), we have

$$c \geq (Fx)(t) = c - \int_{t}^{\infty} A(s) \left(\int_{s}^{\infty} b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s$$

$$\geq c - c^{\frac{\beta}{\alpha}} \int_{t}^{\infty} A(s) \left(\int_{s}^{\infty} b(\tau) \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s \geq \frac{c}{2},$$

and so $F : \Omega \to \Omega$. Since

$$||Fx_n(t) - (Fx)(t)|| \leq \int_{t_1}^{\infty} A(s) \left(\int_{s}^{\infty} b(\tau) (x^\sigma_n(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} - \left(\int_{s}^{\infty} b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s,$$

where x_n is a sequence of functions converging to x. Hence, Lebesque Dominated Convergence Theorem yields

$$||Fx_n(t) - (Fx)(t)|| \to 0,$$

which implies the continuity of F on Ω. Also

$$0 \leq -[F(x(t))]^\Delta = A(t) \left(\int_{t}^{\infty} b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \leq c^{\frac{\beta}{\alpha}} A(t) \left(\int_{t}^{\infty} b(\tau) \Delta \tau \right)^{\frac{1}{\alpha}} < \infty$$
implies that F is equibounded and equicontinuous. Therefore by Schauder’s Fixed Point Theorem, there exists $\bar{x} \in \Omega$ such that $\bar{x} = F \bar{x}$. Then

$$\bar{x}(t) = c - \int_t^\infty A(s) \left(\int_s^\infty b(\tau) (\bar{x}^\sigma(\tau))^{\bar{\beta}} \Delta \tau \right) \frac{1}{\bar{\alpha}} \Delta s.$$

(8)

So as $t \to \infty$, $\bar{x}(t) \to c$. Note that $\bar{x}^\Delta(t) > 0$ for $t \geq t_1$. So it is eventually monotone, i.e., \bar{x} is nonoscillatory. Therefore, taking derivative of (8) and using the first equation of system (1) give us

$$\bar{y}(t) = \int_t^\infty b(\tau) (\bar{x}^\sigma(\tau))^{\bar{\beta}} \Delta \tau.$$

It follows that $\bar{y}(t) > 0$ for $t \geq t_1$, i.e., (\bar{x}, \bar{y}) is nonoscillatory and then by Remark 1.1 and Lemma 1.3, $(\bar{x}, \bar{y}) \in M^+$. Taking limit as $t \to \infty$ yields $\bar{y}(t) \to 0$. Hence $M_{B,0}^+ \neq \emptyset$. \qed

Theorem 2.2. $M_{\alpha, \beta}^+ \neq \emptyset$ if and only if $K_{\beta} < \infty$.

Proof. Suppose that $M_{\alpha, \beta}^+ \neq \emptyset$. Then there exists $(x, y) \in M^+$ such that $|x(t)| \to \infty$ and $|y(t)| \to d$, for $0 < d < \infty$. Without loss of generality assume that $x(t) > 0$ for $t \geq t_1$. Integrating the first equation from t_1 to $\sigma(t)$ and the second equation from t_1 to t of system (1) give us

$$x^\sigma(t) = x^\sigma(t_1) + \int_{t_1}^{\sigma(t)} A(s) y^\frac{1}{\alpha}(s) \Delta s > d^{\frac{1}{\alpha}} \int_{t_1}^{\sigma(t)} A(s) \Delta s.$$

(9)

and

$$y(t_1) - y(t) = \int_{t_1}^t b(s) (x^\sigma(s))^{\beta} \Delta s,$$

(10)

respectively. Then by (9) and (10), we have

$$\int_{t_1}^t b(s) \left(\int_{t_1}^{\sigma(s)} A(\tau) \Delta \tau \right)^{\beta} \Delta s < d^{\frac{\beta}{\alpha}} \int_{t_1}^t b(s) (x^\sigma(s))^{\beta} \Delta s$$

$$< d^{\frac{\beta}{\alpha}} (y(t_1) - y(t))$$

So as t goes to ∞, it follows that $K_{\beta} < \infty$.

Conversely, suppose that $K_{\beta} < \infty$. Choose $t_1 \geq t_0$ so large that

$$\int_{t_1}^\infty b(s) \left(\int_{t_1}^{\sigma(s)} A(\tau) \Delta \tau \right)^{\beta} \Delta s < \frac{d}{(2d)^{\beta}}.$$

(11)

for arbitrarily given $d > 0$. Let X be the partially ordered Banach Space of all real-valued continuous functions with the norm $\|x\| = \sup_{t \geq t_1} \frac{|x(t)|}{\int_{t_1}^t A(s) \Delta s}$ and the usual pointwise ordering \leq. Define a subset Ω of X as follows:

$$\Omega : \{x \in X : d^{\frac{1}{\alpha}} \int_{t_1}^t A(s) \Delta s \leq x(t) \leq (2d)^{\frac{1}{\alpha}} \int_{t_1}^t A(s) \Delta s \text{ for } t > t_1\}.$$
First since every subset of Ω has a supremum and infimum in Ω, (Ω, \leq) is a complete lattice. Define an operator $F : \Omega \to X$ as
\[
(Fx)(t) = \int_{t_1}^{t} A(s) \left(d + \int_{s}^{\infty} b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s.
\] (12)

It can be shown that $F : \Omega \to \Omega$ is an increasing mapping for $t \geq t_1$.

So by the Knaster Fixed Point Theorem, we have that there exists $\bar{x} \in \Omega$ such that
\[
\bar{x}(t) = \int_{t_1}^{t} A(s) \left(d + \int_{s}^{\infty} b(\tau) (\bar{x}^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s \quad \text{for} \quad t > t_1.
\] (13)

Hence \bar{x} is eventually positive, i.e nonoscillatory. Then by taking the derivative of (13) and using the first equation of system (1) give us
\[
\bar{y}(t) = \left(\bar{x}^\Delta(t) \right)^{\alpha} a(t) = d + \int_{t}^{\infty} b(\tau) (\bar{x}^\sigma(\tau))^{\beta} \Delta \tau.
\] (14)

Then it follows that \bar{y} is eventually positive, i.e., nonoscillatory. Hence, (\bar{x}, \bar{y}) is a nonoscillatory solution of system (1) and by Lemma 1.3 we have $(\bar{x}, \bar{y}) \in M^+$. For $\bar{x} \in \Omega$, we also have
\[
\bar{x}(t) \geq \int_{t_1}^{t} A(s) \left[d + \int_{s}^{\infty} b(\tau) \left(\frac{1}{\alpha} \int_{t_1}^{\sigma(\tau)} A(\lambda) \Delta \lambda \right)^{\frac{1}{\alpha}}\right]^{\frac{1}{\alpha}} \Delta s.
\]

As $t \to \infty$, the right hand side of the last inequality goes to ∞ since $Y_a = \infty$. Therefore $\bar{x}(t) \to \infty$ as $t \to \infty$. Taking limit as $t \to \infty$ of (14) gives that y has a finite limit. Therefore $M_{\infty,0}^{+} \neq \emptyset$.

Theorem 2.3. If $J_\alpha = \infty$ and $K_\beta < \infty$, then $M_{\infty,0}^{+} \neq \emptyset$.

Proof. Suppose that $J_\alpha = \infty$ and $K_\beta < \infty$. Since $Y_a = \infty$, we can choose $t_1, t_2 \geq t_0$ so large that
\[
\int_{t_2}^{\infty} b(t) \left(\int_{t_0}^{\sigma(t)} A(s) \Delta s \right)^{\beta} \Delta t \leq 1
\] (15)

and
\[
\int_{t_1}^{t_2} A(s) \Delta s \geq 1.
\] (16)

Let X be the Fréchet Space of all continuous functions on $[t_1, \infty)_T$ endowed with the topology of uniform convergence on compact subintervals of $[t_1, \infty)_T$. Set
\[
\Omega := \{ x \in X : \ 1 \leq x(t) \leq \int_{t_1}^{t} A(s) \Delta s \ \text{for} \ t \geq t_1 \}.
\]
and define an operator $T : \Omega \to X$ by
\[
(Tx)(t) = 1 + \int_{t_2}^t A(s) \left(\int_s^\infty b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}}.
\] (17)

We can show that $T : \Omega \to \Omega$ is continuous on $\Omega \subset X$ by Lebesque Dominated Convergence Theorem. Since
\[
0 \leq \left[(Tx)(t)^\Delta \right] = A(t) \left(\int_t^\infty b(\tau) (x^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \leq A(t) \left(\int_t^\infty b(\tau) \left(\int_{t_1}^{\sigma(\tau)} A(\lambda) \Delta \lambda \right)^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} < \infty,
\]
it follows that T is equibounded and equicontinuous. Then by Tychonoff Fixed Point Theorem, there exists $\bar{x} \in \Omega$ such that
\[
\bar{x}(t) = (T\bar{x})(t) = 1 + \int_{t_2}^t A(s) \left(\int_s^\infty b(\tau) (\bar{x}^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \text{ for } t \geq t_2.
\] (18)

Therefore, it follows that \bar{x} is eventually positive, i.e., nonoscillatory. Then integrating (18) and by the first equation of system (1), we have
\[
\bar{y}(t) = a(t) (\bar{x}(t)\Delta(t))^{\alpha} = \int_t^\infty b(\tau) (\bar{x}^\sigma(\tau))^{\beta} \Delta \tau.
\] (19)

It follows that \bar{y} is eventually positive, i.e., (x, y) is a nonoscillatory solution of system (1). So by Lemma 1.3 it follows that $(\bar{x}, \bar{y}) \in M^+$. Also by monotonicity of \bar{x}, we have
\[
\bar{x}(t) = 1 + \int_{t_2}^t A(s) \left(\int_s^\infty b(\tau) (\bar{x}^\sigma(\tau))^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \geq (\bar{x}(t_2))^{\alpha} \int_{t_2}^t A(s) \left(\int_s^\infty b(\tau) \Delta \tau \right)^{\frac{1}{\alpha}}.
\]
Hence as $t \to \infty$, it follows that $\bar{x}(t) \to \infty$. And by (19), we have $\bar{y}(t) \to 0$ as $t \to \infty$. Therefore $M^+_{\infty,0} \neq \emptyset$.

Next we give the integral relationships between J_α, K_β, Y_α, and Z_β and make a conclusion for the existence and non-existence of solution (x, y) of system (1) based on α and β. The proof of the following lemma is similar to the proofs of Lemma 1.1, Lemma 3.2, Lemma 3.3, Lemma 3.6 and Lemma 3.7 in [3].

Lemma 2.3. (a) If $J_\alpha < \infty$ or $K_\beta < \infty$ then $Z_\beta < \infty$.
(b) If $K_\beta = \infty$, then $Y_\alpha = \infty$ or $Z_\beta = \infty$.
(c) If $J_\alpha = \infty$, then $Y_\alpha = \infty$ or $Z_\beta = \infty$.
(d) Let $\alpha \geq 1$. If $J_\alpha < \infty$, then $K_\beta < \infty$.
(e) Let $\beta \leq 1$. If $K_\beta < \infty$, then $J_\alpha < \infty$.
(f) Let $\alpha < \beta$. If $K_\beta < \infty$, then $J_\alpha < \infty$ and $K_\beta < \infty$.
(g) Let $\alpha > \beta$. If $J_\alpha < \infty$, then $K_\beta < \infty$ and $J_\beta < \infty$.

The following corollaries give the existence and nonexistence of nonoscillatory solutions \((x, y)\) of system (1) in our subclasses by Lemma 2.3 and our main theorems presented in this section.

Corollary 2.1. Suppose that \(Y_a = \infty\) and \(Z_b < \infty\). Then

1. **(a)** \(M_{B,0}^+ \neq \emptyset\) if any of the followings hold:

 - (i) \(J_\alpha < \infty\),
 - (ii) \(\alpha < \beta\) and \(K_\beta < \infty\),
 - (iii) \(\alpha < \beta, \beta \geq 1\) and \(J_\beta < \infty\),
 - (iv) \(\alpha \leq 1\) and \(K_\alpha < \infty\).

2. **(b)** \(M_{\infty,B}^+ \neq \emptyset\) if any of the followings hold:

 - (i) \(K_\beta < \infty\),
 - (ii) \(\alpha > \beta\) and \(J_\alpha < \infty\),
 - (iii) \(\alpha \geq 1\) and \(J_\beta < \infty\).

3. **(c)** \(M_{B,0}^- \neq \emptyset\) if any of the followings hold:

 - (i) \(J_\alpha = \infty\),
 - (ii) \(\alpha > \beta\) and either \(J_\beta = \infty\) or \(K_\beta = \infty\),
 - (iii) \(\alpha \geq 1\) and \(K_\alpha = \infty\).

4. **(d)** \(M_{\infty,B}^- \neq \emptyset\) if any of the followings hold:

 - (i) \(K_\beta = \infty\),
 - (ii) \(\alpha < \beta\) and either \(J_\alpha = \infty\) or \(K_\alpha = \infty\),
 - (iii) \(\beta \leq 1\) and \(J_\beta = \infty\).

3 The Case \(Y_a < \infty\) and \(Z_b < \infty\)

In this section, we show the existence of solution \((x, y)\) of system (1) by assuming \(Y_a < \infty\). Since we investigate the solutions \((x, y)\) in \(M^+\), we also have to assume that \(Z_b < \infty\) because of Lemma 1.4. Recall that \(M^+\) is the set of nonoscillatory solutions \((x, y)\) such that \(x\) and \(y\) have the same sign. Without loss of generality let us assume that \(x > 0\) eventually. Then by the first equation of system (1), \(x\) is eventually increasing and by Lemma 1.5 limit of \(x\) approaches to a positive constant and limit of \(y\) exists. Also by the second equation of system (1) \(y\) is eventually decreasing and approaches to a nonnegative constant.

In the light of this information, one can easily prove the following lemma.
Lemma 3.1. For $0 < c < \infty$ and $0 < d < \infty$, any nonoscillatory solution in M^+ belongs to the following subclasses:

\[M_{B,B}^+ = \left\{ (x,y) \in M^+ : \lim_{t \to \infty} |x(t)| = c, \lim_{t \to \infty} |y(t)| = d \right\} \]

\[M_{B,0}^+ = \left\{ (x,y) \in M^+ : \lim_{t \to \infty} |x(t)| = c, \lim_{t \to \infty} |y(t)| = 0 \right\}. \]

The following theorems show the existence of nonoscillatory solutions (x,y) in these subclasses of M^+.

Theorem 3.1. (a) $M_{B,B}^+ \neq \emptyset$ if $Y_a < \infty$ and $Z_b < \infty$.

(b) If $M_{B,B}^+ \neq \emptyset$, then $J_\alpha < \infty$.

Proof. (a) Suppose that $Y_a < \infty$ and $Z_b < \infty$. Then $J_\alpha < \infty$ by Lemma 2.3 (c). Since $Y_a < \infty$, for arbitrarily given $c, d > 0$ there exists $t_1 \geq t_0$ such that

\[
\int_{t_1}^{t} A(s) \left(d + \int_{s}^{\infty} c^\beta b(s) \Delta s \right)^{\frac{1}{\alpha}} \leq \frac{c}{2} \text{ for } t \geq t_1. \tag{20}
\]

Let X be the Banach space of all real-valued continuous functions endowed with the norm $\|x\| = \sup_{t \in [t_1, \infty)} |x(t)|$ and with the usual pointwise ordering \leq. Define a subset Ω of X such that

\[
\Omega := \left\{ x \in X : \frac{c}{2} \leq x(t) \leq c \text{ for } t \geq t_1 \right\}.
\]

For any subset $\tilde{\Omega} \subseteq \Omega$, it is obvious that $\inf \tilde{\Omega} \in \Omega$ and $\sup \tilde{\Omega} \in \Omega$. Define an operator $F : \Omega \to X$ as

\[
(Fx)(t) = \frac{c}{2} + \int_{t_1}^{t} A(s) \left(d + \int_{s}^{\infty} b(\tau) \left(x^\sigma(\tau) \right)^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s.
\]

One can show that $F : \Omega \to \Omega$ and F is an increasing mapping. So by Knaster Fixed point theorem, there exists $\bar{x} \in \Omega$ such that

\[
\bar{x}(t) = (F\bar{x})(t) = \frac{c}{2} + \int_{t_1}^{t} A(s) \left(d + \int_{s}^{\infty} b(\tau) \left(\bar{x}^\sigma(\tau) \right)^{\beta} \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s. \tag{21}
\]

Therefore, it follows that $\bar{x}(t) > 0$ for $t \geq t_1$. So by the first equation of system (1), we have $\bar{y}(t) > 0$ for $t \geq t_1$, i.e., $(\bar{x}, \bar{y}) \in M^+$. From (21), we have

\[
\bar{x} \leq \frac{c}{2} + \int_{t_1}^{t} A(s) \left(d + c^\beta \int_{s}^{\infty} b(\tau) \Delta \tau \right)^{\frac{1}{\alpha}} \Delta s.
\]

So as $t \to \infty$, it follows that the limit of \bar{x} is finite. By taking the derivative of (21) and the first equation of system (1), we have

\[
\bar{y}(t) = (\bar{x}^{\Delta}(t))^{\alpha} a(t) = d + \int_{t}^{\infty} b(\tau) \left(\bar{x}^\sigma(\tau) \right)^{\beta} \Delta \tau. \tag{22}
\]
Taking the limit of (22) as \(t \to \infty \) yields that \(\bar{y}(t) \to d \). Therefore, we conclude that \((\bar{x}, \bar{y}) \in M_{B,B}^+ \neq \emptyset\).

(b) Suppose that \(M_{B,B}^+ \neq \emptyset \). Without loss of generality assume that \(x \) is eventually positive. Then there exists \(t_1 \geq t_0 \) and \((x, y) \in M^+ \) such that \(x \to c \) and \(y \to d \) as \(t \to \infty \) for \(0 < c < \infty \) and \(0 < d < \infty \). Integrating the second equation of system (1) from \(t \) to \(\infty \) and using the monotonicity of \(x \) give us

\[
y(t) > (x(t))^\beta \int_t^\infty b(s) \Delta s \quad \text{for } t \geq t_1
\]

or

\[
y(t) > (x(t))^\beta \left(\int_t^\infty b(s) \Delta s \right)^{\frac{1}{\beta}} \quad \text{for } t \geq t_1.
\]

Substituting (23) into the first equation of system (1) yields

\[
x^\Delta(t) > A(t)x^{\frac{\alpha}{2}} \left(\int_t^\infty b(s) \Delta s \right)^{\frac{1}{2}}.
\]

Integrating (24) from \(t_1 \) to \(t \) and by the monotonicity of \(x \) give us

\[
x(t) > x^{\frac{a}{2}}(t_1) \int_{t_1}^t A(s) \left(\int_s^\infty b(\tau) \Delta \tau \right)^{\frac{1}{2}} \Delta s
\]

As \(t \to \infty \), the assertion follows.

The following theorem can be proved similar to Theorem 2.1.

Theorem 3.2. (a) \(M_{B,0}^+ \neq \emptyset \) if \(Y_\alpha < \infty \) and \(Z_b < \infty \).

(b) If \(M_{B,0}^+ \neq \emptyset \), then \(J_\alpha < \infty \).

By Lemma 2.1 and from our main results in Sections 2 and 3, one can have the following corollaries.

Corollary 3.1. If \(Y_\alpha < \infty \) and \(Z_b < \infty \), then any nonoscillatory solution in \(M^+ \) of system (1) belongs to \(M_{B,B}^+ \) or \(M_{B,0}^+ \), i.e., \(M^+_{\infty,B} = M^+_{\infty,0} = \emptyset \).

Corollary 3.2. If \(Y_\alpha = \infty \) and \(Z_b < \infty \), then \(M_{B,B}^+ = \emptyset \).

4 Examples

In this section, we give three examples to illustrate Theorem 2.2 and Theorem 2.3.

Example 4.1. Let \(T = q^{N_0}, q > 1, \alpha = 1, A(t) = \frac{t}{1+t^2}, b(t) = \frac{1}{q^{1+q^2}}, s = q^m \) and \(t = q^n \), where \(m, n \in N_0 \), in system (1). It is easy to show that \(Y_\alpha = \infty \)
and \(Z_b < \infty \). Let us show that \(K_\beta < \infty \).

\[
\int_{t_0}^{T} b(t) \left(\int_{t_0}^{t} A(s) \Delta s \right) \Delta t = \sum_{t=1}^{\rho(T)} \frac{1}{q^{1+\beta} t^{1+\beta}} \left(\sum_{s=1}^{t} \frac{s^2(q-1)}{1 + 2s} \right)^{\beta} (q-1) t
\]

\[
< \frac{(q-1)^{\beta+1}}{q^{1+\beta}} \sum_{t=1}^{\rho(T)} \frac{1}{t^{1+\beta}} \left(\sum_{s=1}^{t} s \right)^{\beta} < \frac{q-1}{q} \sum_{t=1}^{\rho(T)} \frac{1}{t}.
\]

We also have

\[
\lim_{T \to \infty} \sum_{t=1}^{\rho(T)} \frac{1}{t} = \sum_{n=0}^{\infty} \frac{1}{q^n} < \infty
\]

by the geometric series. So we have that \(K_\beta < \infty \). It can be verified that \((t, \frac{1}{t} + 2)\) is a nonoscillatory solution of

\[
\begin{cases}
 x^\Delta = \frac{t}{t^2 + t} |y| \text{sgn} y \\
y^\Delta = -\frac{1}{q^{1+\beta} t^{1+\beta}} |x|^{\beta} \text{sgn} x
\end{cases}
\]

in \(M^+ \) such that \(\lim_{t \to \infty} t = \infty \) and \(\lim_{t \to 0} \frac{1}{t} + 2 = 2 \), i.e., \(M^{+}_{\infty, B} \neq \emptyset \).

Example 4.2. Let \(T = \mathbb{R}, \alpha > \beta \) with \(\beta < 1 \), \(A(t) = e^{2t} \) and \(b(t) = \alpha e^{-t(\alpha + \beta)} \) in system (1). Clearly, \(Y_a = \infty \) and \(Z_b < \infty \). One can show that

\[
J_\alpha = \int_{t_0}^{\infty} e^{2t} \left(\int_{t_0}^{t} \alpha e^{-s(\alpha + \beta)} ds \right)^{\frac{\alpha}{\beta}} dt = \infty
\]

and

\[
K_\beta = \int_{t_0}^{\infty} \alpha e^{-t(\alpha + \beta)} \left(\int_{t_0}^{t} e^{2s} ds \right)^{\beta} dt < \infty.
\]

It is easy to verify that \((e^t, e^{-\alpha t})\) is a nonoscillatory solution of

\[
\begin{cases}
 x' = e^{2t} |y|^{\frac{\alpha}{\beta}} \text{sgn} y \\
y' = -\alpha e^{-t(\alpha + \beta)} |x|^{\beta} \text{sgn} x
\end{cases}
\]

in \(M^+ \) such that \(\lim_{t \to \infty} e^t = \infty \) and \(\lim_{t \to 0} e^{-\alpha t} = 0 \), i.e., \(M^{+}_{\infty, 0, \emptyset} \).

Example 4.3. Let \(T = q^{N_0}, q > 1, \alpha = 1, \beta < 1, \) \(A(t) = 1 + t, b(t) = \frac{1}{(1+t)(1+qt)^{\beta+1}} \) in system (1). It is easy to verify that \(Y_a = \infty \) and \(Z_b < \infty \). Letting \(s = q^m \) and \(t = q^n \), where \(m, n \in \mathbb{N}_0 \), gives

\[
\int_{t_0}^{T} A(t) \left(\int_{t_0}^{t} b(s) \Delta s \right) \Delta t = \sum_{t=1}^{\rho(T)} (1 + t) \left(\sum_{s=1}^{\rho(T)} \frac{(q-1)s}{(1 + s)(1 + sq)^{\beta+1}} \right) (q-1) t
\]

\[
\geq (q-1)^2 \sum_{t=1}^{\rho(T)} (1 + t) \left(\frac{t}{(1 + t)(1 + qt)^{\beta+1}} \right) t = (q-1)^2 \sum_{t=1}^{\rho(T)} \frac{t^2}{(1 + t)(1 + qt)^{\beta+1}}.
\]
So we have
\[
\lim_{T \to \infty} \sum_{t=1}^{\rho(T)} \frac{t^2}{(1 + tq)^{\beta + 1}} = \sum_{n=0}^{\infty} \frac{q^{2n}}{(1 + q^{n+1})^{\beta + 1}} = \infty
\]
by the Test for Divergence and \(\beta < 1\). Now let us show that \(K_\beta < \infty\). One can show that
\[
\int_{t_0}^{\tau(t)} A(s) \Delta s = \sum_{s=1}^{t} (1 + s)(q - 1)s \leq tq(1 + tq)
\]
and so we have
\[
\int_{t_0}^{T} b(t) \left(\int_{t_0}^{\sigma(t)} A(s) \Delta s \right)^{\beta} \Delta t
\leq \sum_{t=1}^{\rho(T)} \frac{1}{(1 + t)(1 + tq)^{\beta + 1}} (tq(1 + tq))^{\beta} t(q - 1)
\leq q^\beta(q - 1) \sum_{t=1}^{\rho(T)} \frac{q^\beta}{1 + t}
\]
Therefore,
\[
\lim_{T \to \infty} q^\beta(q - 1) \sum_{t=1}^{T} \frac{t^\beta}{1 + t} = q^\beta(q - 1) \sum_{n=0}^{\infty} \frac{(q^n)^\beta}{(1 + q^n)^{\beta + 1}} < \infty
\]
by the Ratio Test and \(\beta < 1\). It can also be verified that \((1 + t, \frac{1}{t+1})\) is a nonoscillatory solution of
\[
\begin{align*}
x^\Delta &= (1 + t) |y|^\frac{3}{2} \sgn y \\
y^\Delta &= -\frac{1}{(1 + t)(1 + tq)^{\beta + 1}} |x^\sigma|^\beta \sgn x
\end{align*}
\]
in \(M^+\) such that \(\lim_{t \to \infty} (1 + t) = \infty\) and \(\lim_{t \to \infty} \frac{1}{t + 1} = 0\), i.e., \(M_{\infty,0}^+ \neq \emptyset\).

References

1Missouri University of Science and Technology, 400 Rolla Building, Missouri 65409-0020, US
2Abant Izzet Baysal University, 14280 Bolu, Turkey
oo976@mst.edu
akin@mst.edu
ismail@ibu.edu.tr