

$$
\begin{aligned}
& E X A M 1 \\
& \operatorname{Jan} 27200 \\
& 5-6 \mathrm{pm} \\
& C E 125
\end{aligned}
$$

$$
\begin{gathered}
\text { MLC } \\
\text { REVIEW } \\
\text { Jan 26,200 } \\
\text { Mc-Nutt } 20 \\
7-9 p m
\end{gathered}
$$

EXAM I $(7.1,7.2,7.3,7.4,7.5,7.7)$
Sec 71 Inverse Functions

- 1-1 functions $\Longrightarrow f^{-1}(x)=y \Longleftrightarrow f(y)=x$
$f^{\prime} \Rightarrow f \downarrow$ or \uparrow
HLT: graph of f

$$
f: A \rightarrow B \quad 1-1 \Rightarrow f^{-1} \text { exists. }
$$

- To find f^{-1} : (a) $y=f(x)$ (b) Solve for x
(c) Interchange x and y
(d) The resulting eqn. $=f^{-1}$.
- To calculate $\left(f^{-1}\right)^{\prime}(a): \quad\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}$. use the den. of f
- To draw the graph of f^{-1} : Reflection about the

$$
y=x
$$

Sec. 72 Exponential Functions and Their Derivatives

$$
\begin{aligned}
& f(x)=a^{x}, a>0 \\
& a^{x}: \mathbb{R} \rightarrow(0,+\infty)
\end{aligned}
$$

1)

- $a^{x}>0$ for all x
- $a^{x+y}=a^{x} \cdot a^{y}$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $(a b)^{x}=a^{x} b^{x}$

$$
\begin{aligned}
& \text { (2). } a>1 \Rightarrow a^{x} \underset{x \rightarrow \infty}{\rightarrow}, \quad a^{x} \rightarrow 0 \\
& .0<a<1 \Rightarrow a_{x \rightarrow-\infty}^{\rightarrow} \rightarrow 0, \quad a^{x} \rightarrow \infty \\
& x \rightarrow-\infty
\end{aligned}
$$

3)

- $\left(a^{x}\right)^{\prime}=a^{x} \ln a$
- $\left(e^{x}\right)^{\prime}=e^{x}$
- $\left(e^{g(x)}\right)^{\prime}=e^{g(x)} \cdot g^{\prime}(x) \quad$ CHAN RULE
- $\int e^{x} d x=e^{x}+c$

Sec 7.3 Logarithmic Functions

- $a^{x} \leftrightarrow 1-1$
- $a^{x}: \mathbb{R} \rightarrow(0,+\infty),\left(a^{x}\right)^{-1}=\log _{a} x:(0,+\infty) \rightarrow \mathbb{R}$
- $a>1$

$$
\text { - } \log _{a} x \underset{x \rightarrow \infty}{\infty}, \log _{a} x \xrightarrow[x \rightarrow 0^{+}]{-\infty}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\log _{a}(x y)=\log _{a} x+\log _{a} y \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a} x^{r}=r \log _{a} x
\end{array}\right\}:\right) \\
& \cdot e^{x} \longleftrightarrow\left(e^{x}\right)^{-1}=\ln x \quad 2<e<3 \\
& \cdot \log _{a} x=\frac{\ln x}{\ln a}
\end{aligned}
$$

\therefore) for log. diff

- Egn. of the torgent to a curve.

Sec 74 Derivatives of Logonthmic Functions

- $(\ln x)^{\prime}=\frac{1}{x}$
- $\left(\ln (g(x))^{\prime}=\frac{g^{\prime}(x)}{g(x)}\right.$

Chain Rule

$$
\begin{aligned}
& \text { - }(\ln |x|)^{\prime}=\frac{1}{x} \\
& \text { - } \int \frac{1}{x} d x=\ln |x|+c \\
& \cdot \int \tan x d x=\ln |\sec x|+c \\
& \text { • }\left(\log _{a} x\right)^{\prime}=\frac{1}{\ln a} \frac{1}{x} \\
& \cdot\left(\log _{a} g(x)^{\prime}=\frac{1}{\ln a} \cdot \frac{g^{\prime}(x)}{g(x)}\right. \\
& \int a^{x} d x=\frac{1}{\ln a} a^{x}+c \\
& \int\left(x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1\right.
\end{aligned}
$$

- Logarithmic Differentiation $\frac{d}{d x}\left(f(x)^{g(x)}\right)$
(a) Take logarithms of both sides of $y=f(x) \quad O R$ wite 1 function as un exporentio function

Sec. 7.5 Inverse Trigonometric Functions
e $\sin x:\left[-\frac{\pi}{2}, \pi\right][-1,1]$

$$
\begin{aligned}
& \cdot \sin ^{-1} x:[-1,] \rightarrow[\pi / \pi / 2] \\
& \cdot \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \cdot \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c \\
& \cdot \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c \quad x u-u \text { subs .t }
\end{aligned}
$$

$$
\begin{aligned}
\text { - } & \cos x:[0, \pi] \rightarrow[-1,1] \\
& \cos ^{-1} x:[-1,1] \rightarrow[0, \pi] \\
& \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

For example
$\frac{1}{-\pi /)_{1}^{\tan x}}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \int \frac{d x}{1+x^{2}}=\tan ^{-1} x+c \\
& \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c
\end{aligned}
$$

Sec. 7.5 Inverse Trigonometric Functions
e $\sin x:\left[-\frac{\pi}{2}, \pi\right][-1,1]$

$$
\begin{aligned}
& \cdot \sin ^{-1} x:[-1,] \rightarrow[\pi / \pi / 2] \\
& \cdot \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \\
& \cdot \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+c \\
& \cdot \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c \quad x u-u \text { subs .t }
\end{aligned}
$$

$$
\begin{aligned}
\text { - } & \cos x:[0, \pi] \rightarrow[-1,1] \\
& \cos ^{-1} x:[-1,1] \rightarrow[0, \pi] \\
& \frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

For example
$\frac{1}{-\pi /)_{1}^{\tan x}}$

$$
\begin{aligned}
& \frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} \\
& \int \frac{d x}{1+x^{2}}=\tan ^{-1} x+c \\
& \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c
\end{aligned}
$$

Sec 7.7 Indeterminate Forms

$$
\left.\begin{array}{l}
(f g)^{\prime}=f^{\prime} g+f g^{\prime} \\
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
\end{array}\right\}
$$

DO NOT CONFUSE with L'HOSPTtAL RULE $\left(\frac{\infty}{\infty}\right) \quad\left(\frac{0}{0}\right)$

DO NOT USE IT IF YOU DO NOT NEED IT.

$$
\cdot \lim \frac{f}{g}=\lim \frac{f^{\prime}}{g^{\prime}}
$$

- $0 . \infty$ convert the product into a quotient

$$
\frac{0}{0} / \frac{\infty}{\infty}(L H R)
$$

- $\infty-\infty \rightarrow$ convert the differences into a quotient
if it is getting ugly $\frac{\infty}{\infty} / \frac{0}{0}$ (LHR)
DO NOT USE LHR and simplify The quotient and The
- $0^{0}, \infty^{\circ}, 1^{\infty}$ Use logarithm

Rewrite the funct. as an \exp fun

$$
\begin{gathered}
y=f(x)^{g(x)} \Rightarrow \ln y=g(x) \ln (f(x)) \xrightarrow[\lim]{ } a \\
\Rightarrow e^{a} \\
y=x^{x} \rightarrow y=e^{\ln x^{x}}=e^{x \ln x} \xrightarrow[x_{\min } \infty]{\rightarrow} b
\end{gathered}
$$

