

 Extensive provide the second se	pperties depend on the si e, U, H	ize or mass of the system
 Intensive pro Pressu 	perties are independent or re, temperature, specific	of system size properties, density
 Important wh system can c 	en dealing with open sys hange	stems since the mass of the

Transfer implies that energy is exchanged between a system and its surroundings Heat is thermal energy that flows Designated by Q Work is defined as all other forms of energy Designated by W	• Ener	gy is divided into two types: heat and work The division will be important when we learn the second lav
Heat is thermal energy that flows Designated by Q Work is defined as all other forms of energy Designated by W	 Tran its s 	sfer implies that energy is exchanged between a system and irroundings
Work is defined as all other forms of energy Designated by W	• Heat	is thermal energy that flows Designated by Q
	• Worl	t is defined as all other forms of energy Designated by W
	WS 2003	

	Work
• Woi	k is any other form of energy transferred to or from the system We will sub-divide work later into P-V type and others
• Mar	y forms of work Mechanical, electrical, magnetic, gravitational
·PV	work is the easiest to understand and describe mathematically Volume of system must change for it to do P-V work $W = -P\Delta V$
• Woi	k is positive when it is done on the system (scientific definition Engineers consider work done by the system to be positive
WS 2003	

Internal Energy	
 More difficult concept than kinetic and potentia 	al energy
Depends on inherent properties of system and	its environment
 Inherent properties Composition (chemical make up) Physical form (solid, liquid, or gas) 	
Environmental effects Temperature, pressure, electric/magnetic	c field, etc.
A compressed spring has a higher internal ene	rgy than one at rest
• Container of $H_2 + O_2$ vs. same P/T of H_2O	
WS 2003	11

Open Systems

- Matter can flow into and out of a system
- The first law must be modified to account for: The internal energy of the material entering and leaving The work done as material is pushed in and out of the system
- U change due to mass change (m_i for mass into, m_o for mass out)

$$dU_{flow} = U_i \delta m_i - U_o \delta m_o$$

Work due to flow into system

 $\delta(\text{flow work}_i) = P \underline{V}_i \delta m_i$

 $\boldsymbol{\cdot}$ The first law can then be rewritten grouping flow and system terms

$$\sum_{\mathbf{m}_{i}} \left(\mathbf{U}_{i} + \mathbf{P}_{i} \mathbf{V}_{i} \right) \delta \mathbf{m}_{i} - \sum_{\mathbf{m}_{o}} \left(\mathbf{U}_{o} + \mathbf{P}_{o} \mathbf{V}_{o} \right) \delta \mathbf{m}_{o} + \delta \mathbf{Q} + \delta \mathbf{W} = d\mathbf{U}$$

WS 2003

16

	Enthalpy
• In	many calculations, the terms U + PV appear together For any constant pressure process Q = U + PV In materials, most reactions happen at 1 atm (const. P)
·Th	e grouping U + PV is given a special designation It is a state function since it contains only state functions
	$\mathbf{H} = \mathbf{U} + \mathbf{PV}$
WS 200	13

Adiabatic	Flow
 Adiabatic means no heat is added or r Rapid processes are often adiab Well insulated systems are ofter 	emoved from the system patic n adiabatic
Steady state flow through a valve is ac	diabatic (δQ = 0)
 First law Steady state Adiabatic No work, system is valve No mass accumulation in system 	$\underline{H}_{i}m_{i} - \underline{H}_{o}m_{o} + \delta Q + \delta W = dU$ $dU = 0$ $\delta Q = 0$ $\delta W = 0$ $m_{i} = m_{o}$
 Flow through a valve is isenthalpic 	$H_i = H_o$
 Joule-Thomson coefficient Change in temperature with pressure a wsZergo for an ideal gas 	at constant H $\eta_{\rm JT} = \left(\frac{\partial T}{\partial P}\right)_{\rm H}$

Ideal Gas		
• For an ideal gas, the equation of state is PV	= RT	
 We previously stated that for an ideal gas: This will be proven in Chapter 3 	$\left(\frac{\partial \underline{U}}{\partial V}\right)_{\mathrm{T}} = 0$	
• Find the relationship between <u>H</u> and P		
Show the value of the Joule-Thomson coefficient	cient	

- · Adiabatic means no heat flow in or out of the system
- A change in pressure changes the temperature
 Nature example air cools as it rises and pressure drops
- Derivation of adiabatic relations
- Example of helium in insulated tank

WS 2003

26

 Enthalpy is a state fur 	nction
 Neither U nor H can b There is no zero Use reference s 	e calculated in absolute terms o point for energy tate
• Reference condition: Stable state is g	stable state of elements at 298 K, 1 atm. paseous O_2 for oxygen
- CO ₂ example	

• Adiat	atic flame temperature (AFT) Highest possible temperature produced by combustion
• Actua	I temperature can be reduced for many reasons Reactions don't always go to completion Heat loss others
• Table comp	s to track moles in and out for fuel, air, and exhaust onents
• Other	examples Polymerization reaction Combustion reaction

- Recover heat from combustion
- Heat for chemical reactions
- · Heat loss

WS 2003

30

