The First Law

- Chapter 1: The First Law

Conservation of energy
Terms introduced and defined (random fashion) Important to understand this chapter for all future work

- The second law (covered later in chapter 2) deals with the conversion of heat to work
- Definitions

Some will be familiar from Phase Equilibria

- Forms of Energy
- Conservation of energy
- Energy Balances in complex systems

System

- A system is any portion of space set aside for study Everything else is the surroundings
- A system may be open or closed

Open: Matter can enter, leave, or both Closed: No matter transfer

Surroundings

- Choice of open or closed depends on how a system is defined Does not depend on any physical constraints
- Fluid in pipe example

Fluid flowing through a pipe
Open system: a specific portion of the pipe
Fluid enters and leaves,
Closed system: a specific volume of the fluid No fluid transfer System may be compressed, but remain closed

Notation

- Must differentiate between total system and per unit mass properties
- \mathbf{U} is internal energy SI unit is joule (J)
- \underline{U} is specific internal energy

$$
\underline{\mathrm{U}}=\frac{\mathrm{U}}{\mathrm{~m}}
$$

SI unit can be J / kg or $\mathrm{J} /$ mole

- V can be specific volume ($\mathrm{m}^{3} / \mathrm{kg}$) or molar volume ($\mathrm{m}^{3} / \mathrm{mole}$)

Specific volume is reciprocal density
Specific gravity is density/density of water Molar volume is molecular weight/density

Formulas will use $\underline{\text { V for molar volume or specific volume }}$ You must determine which is meant from context For chemical reactions and solution properties \mathbf{V} is molar volume

Intensive/Extensive Properties

- Extensive properties depend on the size or mass of the system Volume, U, H
- Intensive properties are independent of system size Pressure, temperature, specific properties, density
- Important when dealing with open systems since the mass of the system can change

Energy Transfer

- Energy is divided into two types: heat and work The division will be important when we learn the second law
- Transfer implies that energy is exchanged between a system and its surroundings
- Heat is thermal energy that flows

Designated by Q

- Work is defined as all other forms of energy

Designated by W

Heat

- Heat is energy that is transferred between a system and its surroundings due to a temperature difference
- Joules (J) is the SI unit for heat
- Heat is positive when it flows from the surroundings into the system
- Systems do not posses heat, heat flows
- When heat flows into a system, it increases the system's thermal energy
- Heat flow can increase the temperature of the system or drive a reaction

Work

- Work is any other form of energy transferred to or from the system We will sub-divide work later into P-V type and others
- Many forms of work

Mechanical, electrical, magnetic, gravitational

- PV work is the easiest to understand and describe mathematically Volume of system must change for it to do P-V work $W=-P \Delta V$
- Work is positive when it is done on the system (scientific definition) Engineers consider work done by the system to be positive

Reversible vs. Irreversible

- A process is reversible if the initial state of the system can be restored with no changes in the surroundings
- Reversible processes usually occur in infinitesimal steps so that equilibrium can be maintained during the change
- Any dissipation of energy by frictional forces, entropy transfer, or other inefficiencies makes a process irreversible
- Example of two gas cylinders initially at the same state One expanded in infinitesimal steps

External P only infinitesimally different than internal
Second expanded rapidly
Adiabatic decompression, finite P difference

- Book uses example of gas expanding into a vacuum rapidly

Expansion produces no work, but compression requires work

Energy of a System

- Three types

Kinetic Energy
Potential Energy
Internal Energy

- Kinetic Energy

Energy due to the motion of a system as a whole
Due to the velocity of the entire system, not molecular motion Macroscopic flow for a gas or liquid, not motion of molecules Translational kinetic energy $=1 / 2 \mathrm{mv}^{2}$
Depends on environment of system (relative motion)

Potential Energy

- Composed of parts due to external forces Gravitational, magnetic, electrical, centrifugal Depends on environment of system
- Gravitational

Can be converted to kinetic by dropping object Object is accelerated as potential converts to kinetic

- Amount is equal to mass times height times \mathbf{g} g is acceleration due to gravity
10 m times 1 kg times $9.8 \mathrm{~m} / \mathrm{s}^{2}=98 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=98 \mathrm{~N} \cdot \mathrm{~m}=98 \mathrm{~J}$
- Potential and kinetic energy are often ignored in thermodynamic analysis

Internal Energy

- More difficult concept than kinetic and potential energy
- Depends on inherent properties of system and its environment
- Inherent properties

Composition (chemical make up)
Physical form (solid, liquid, or gas)

- Environmental effects

Temperature, pressure, electric/magnetic field, etc.

- A compressed spring has a higher internal energy than one at rest
- Container of $\mathrm{H}_{2}+\mathrm{O}_{2}$ vs. same P / T of $\mathrm{H}_{2} \mathrm{O}$

State Functions

- Many thermodynamic calculations depend on this concept
- Internal energy is a state function (along with H, F, and G)
- The internal energy difference between two states is only dependent upon the parameters that specify the states, not the path taken to get from one state to the other
- Consider a simple P-V system $\Delta \mathrm{U}=\mathrm{U}_{2}-\mathrm{U}_{1}$
$\Delta U=U_{D}-U_{A}$
- ΔU does not depend on path, only the initial and final P-V values
- The path can go thru C or B of neither

Work

- Work is path dependent It is not a state function
- Consider the simple P-V system We will change its state reversibly by simply changing the temperature
- Path 1

Isobaric (constant P) expansion from A to B, then
isochoric (constant V) pressure increase from B to D

- Path 2

Isochoric pressure increase from \mathbf{A} to C , then isobaric expansion from C to D

- Work done on the system

$$
\text { Path 1: } W=-P_{1}\left(V_{2}-V_{1}\right)
$$

Path 1: $W=-P_{2}\left(V_{2}-V_{1}\right)$
WS 2003
Work is different for two paths

Cyclic Processes

- This system can be cycled through P and V following the path A-B-D-C
- The work done during the cycle is:

$$
\begin{aligned}
& \mathrm{W}=\square \mathrm{P} \mathrm{dV} \\
& \mathrm{~W}=\square \mathrm{P}_{1}\left(\mathrm{~V}_{2} \square \mathrm{~V}_{1}\right) \square \mathrm{P}_{2}\left(\mathrm{~V}_{1} \square \mathrm{~V}_{2}\right) \\
& \mathrm{W}=\left(\mathrm{P}_{2} \square \mathrm{P}_{1}\right)\left(\mathrm{V}_{1} \square \mathrm{~V}_{2}\right)
\end{aligned}
$$

- Work is positive for path A-B-D-C
- Would be negative for reverse path
- Since \mathbf{U} is a state function, any difference in internal energy due to work after the cycle must be compensated by heat flow (can be reversible or not) (example calculation)
WS 2003

Closed Systems

- In a closed system

No matter enters or leaves system Boundaries may expand or contract due to work Thermal energy may flow in and out

- Neglecting kinetic and potential energy, the first law is:

$$
\square \mathrm{Q}+\square \mathrm{W}=\mathrm{dU}
$$

- U is internal energy

Differential quantity because it is a state function Not a function of path, can take a true derivative

- Q and W (heat and work)

Are path dependent, not state functions

- If kinetic and potential energy terms are considered:

$$
\square Q+\square W=d U+d(P E)+d(K E)
$$

Open Systems

- Matter can flow into and out of a system
- The first law must be modified to account for:

The internal energy of the material entering and leaving The work done as material is pushed in and out of the system

- U change due to mass change (m_{i} for mass into, m_{0} for mass out)

$$
\mathbf{d} \mathbf{U}_{\text {flow }}=\mathbf{U}_{\mathrm{i}} \nabla \mathrm{~m}_{\mathrm{i}} \square \mathbf{U}_{\mathrm{o}} \nabla \mathrm{~m}_{\mathrm{o}}
$$

- Work due to flow into system

$$
\square\left(\text { flow } \quad \text { work }_{i}\right)=\mathbf{P} \underline{V}_{i} \nabla m_{i}
$$

- The first law can then be rewritten grouping flow and system terms

$$
\square_{m_{i}}\left(\mathbf{U}_{\mathrm{i}}+\mathbf{P}_{\mathrm{i}} \mathbf{V}_{\mathrm{i}}\right) \square \mathrm{m}_{\mathrm{i}} \square \square_{\mathrm{m}_{\mathrm{o}}}\left(\mathbf{U}_{\mathrm{o}}+\mathbf{P}_{\mathrm{o}} \mathbf{V}_{\mathrm{o}}\right) \square \mathrm{m}_{\mathrm{o}}+\square \mathbf{Q}+\square \mathbf{W}=\mathrm{dU}
$$

Enthalpy

- In many calculations, the terms U + PV appear together For any constant pressure process $\mathbf{Q}=\mathrm{U}+\mathrm{PV}$ In materials, most reactions happen at 1 atm (const. P)
- The grouping $\mathbf{U}+\mathrm{PV}$ is given a special designation It is a state function since it contains only state functions

$$
\mathbf{H} \equiv \mathbf{U}+\mathbf{P V}
$$

Steady State

- A system that does not change with time is at steady state Time invariant Matter may enter and leave Useful to analyze any continuous process pumps, turbines, chemical reactors, furnaces
- First law can be re-written for $\mathrm{dU}=0$

$$
\begin{aligned}
& \mathbf{Q}+\mathbf{W}=\square_{m_{o}} \underline{H}_{0} \mathbf{m}_{\mathrm{o}}+\square_{\mathbf{m}_{i}} \underline{H}_{i} \mathbf{m}_{\mathrm{i}} \\
& \square \mathbf{Q}+\square \mathbf{W}=\square_{\mathbf{m}_{0}} \underline{H}_{0} \square \mathbf{m}_{\mathrm{o}}+\square_{\mathbf{m}_{i}} \underline{H}_{i} \square \mathrm{~m}_{\mathrm{i}}
\end{aligned}
$$

Heat Capacity

- The amount of thermal energy that must be transferred into a system to change its temperature is its heat capacity
- No underscore is used even though heat capacity has mass (kg or moles) in its units, $\mathrm{J} / \mathrm{mole} \cdot \mathrm{K}$ or $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$
- The simplest form of heat capacity is for a constant volume system that does no mechanical work
- C_{v} is a function of temperature and the specific volume of the system

$$
\begin{aligned}
& \square \mathbf{Q}+\square \mathbf{W}=\mathbf{d U} \\
& \square \mathbf{W}=\mathbf{0} \\
& \square \mathbf{Q}=\mathbf{d U} \\
& \square \mathbf{Q}=\mathbf{d U}=\mathbf{m C} \mathbf{C}_{\mathrm{v}} \mathbf{d T} \\
& \mathbf{C}_{\mathrm{v}} \mathbf{d T}=\frac{\mathbf{d U}}{\mathbf{m}}=\mathbf{d} \underline{\mathbf{U}} \\
& \mathbf{C}_{\mathbf{v}} \equiv \frac{\partial \underline{U} \square}{\square \mathbf{d T}} \square_{\mathrm{v}} \\
& \mathbf{d U}=\mathbf{m C}_{\mathbf{v}} \mathbf{d T} 19
\end{aligned}
$$

Heat Capacity

- Unless constrained, most materials expand when heated Thermal energy increases U
PV work is done by the system as it expands
- If we consider only mechanical work (PV)
- At constant pressure, $d P=0$, so $P d V=d(P V)$
- Tables list C_{P} since that is how most experiments are performed
- Tables give \mathbf{a}, b, and \mathbf{c} coefficients

$$
\mathbf{C}_{\mathbf{P}}=\mathbf{a}+\mathbf{b T}+\mathbf{c T}^{\square^{2}}
$$

$\square Q+\square W=d U$
$\square Q \square \mathbf{P d V}=\mathbf{d U}$
$\square Q=\mathbf{d U}+\mathbf{P d V}$
$\square \mathrm{Q}=\mathrm{d}(\mathrm{U}+\mathrm{PV})=\mathbf{d H}$
$\mathrm{dH}=\mathrm{mC}_{\mathrm{p}} \mathrm{dT}$
$\mathrm{d} \underline{\mathrm{H}}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}$
$\mathbf{C}_{\mathrm{P}} \equiv \frac{\mathrm{B}}{\square} \frac{\partial \mathbf{H} \square}{\partial \mathrm{T}} \square_{\mathrm{P}}$

- Heat capacity is a function of T and P

WS 2003

Heat Capacity

- Example problems

Adiabatic Flow

- Adiabatic means no heat is added or removed from the system Rapid processes are often adiabatic Well insulated systems are often adiabatic
- Steady state flow through a valve is adiabatic ($\overline{\mathrm{Q}=0}$)
- First law

Steady state
Adiabatic
No work, system is valve
No mass accumulation in system

- Flow through a valve is isenthalpic - Joule-Thomson coefficient Joule-Thomson coefficient
Change in temperature with pressure at constant \mathbf{H} ws Zero for an ideal gas
$\underline{H}_{i} m_{i} \square \underline{H}_{0} m_{0}+\square Q+\square W=d U$
$\mathrm{dU}=0$
$\square \mathrm{Q}=0$
$\square \mathbf{W}=0$
$\mathbf{m}_{\mathrm{i}}=\mathbf{m}_{\mathrm{o}}$
$H_{i}=H_{o}$

Ideal Gas

- For an ideal gas, the equation of state is $\mathbf{P V}=\mathbf{R T}$
- We previously stated that for an ideal gas: This will be proven in Chapter 3
$\log _{\partial \partial \mathrm{V}}^{\mathrm{\partial}} \mathrm{E}_{\mathrm{r}}=0$
- Find the relationship between \underline{H} and P
- Show the value of the Joule-Thomson coefficient

Heat Capacity of an ideal gas

- Derive the $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}$ relationship
- Typical values for ideal gases
$\mathrm{C}_{\mathrm{p}} \quad \mathrm{C}_{\mathrm{v}}$
Monatomic ideal gas (He, Ar)
3/2R 5/2R
Diatomic gas $\left(\mathrm{O}_{2}, \mathrm{H}_{2}\right)$
5/2R 7/2R
- Compare to value calculated using coefficients

Non-Ideal Gases

- Show Figures 1.8 and 1.9 as phase diagram examples
- Critical temperature
below gas can be compressed to liquid at constant T above, cannot form a liquid far above, all have ideal behavior
- Use compressibility (Z) or reduced pressure/temperature to describe non-ideal behavior
-

Adiabatic Compression/Expansion

- Adiabatic means no heat flow in or out of the system
- A change in pressure changes the temperature Nature example air cools as it rises and pressure drops
- Derivation of adiabatic relations
- Example of helium in insulated tank

Enthalpy of Formation

- Enthalpy is a state function
- Neither U nor H can be calculated in absolute terms There is no zero point for energy Use reference state
- Reference condition: stable state of elements at $298 \mathrm{~K}, 1$ atm. Stable state is gaseous O_{2} for oxygen
- CO_{2} example

Enthalpy Change, Chemical Rxns

- Can be calculated from tabulated heats of formation of species in rxn
- Methane example at 298 K
- Generic example at 298 K
- At temperature other than 298 K

Add heat capacity term

Adiabatic temperature change

- Adiabatic flame temperature (AFT) Highest possible temperature produced by combustion
- Actual temperature can be reduced for many reasons Reactions don't always go to completion Heat loss others
- Tables to track moles in and out for fuel, air, and exhaust components
- Other examples

Polymerization reaction Combustion reaction

Application of ATF to ceramics

- Drying and firing ceramics
- Heat ware and air (including water in air)
- Recover heat from combustion
- Heat for chemical reactions
- Heat loss

Dryer Example

