Goal: Understand basic electrochemical reactions		
• Homework:		
 Applications Batter Fuel c Oxyge 	y potential calculation ell potential calculations en sensors	

Cell Voltage

- From Chapter 5, $\Delta G = \Delta G^{\circ} + RT \ln K_a$
- + Equilibrium was a special case where ${\scriptstyle \Delta}G$ = 0 or $G_{products}$ = $G_{reactants}$
- · Using an applied potential, a non-equilibrium state can be stabilized

```
\Delta G = W_{rev}
dW_{rev} = -(quantity of charge)(potential difference)
dW_{rev} = -dQ(E)
Q = ne = (number of electrons)(charge per electron)
Q = zN_A e = zF
\Delta G = W_{rev} = -EzF
```

- F is the Faraday constant, 96,400 coulomb/mole z is the number of electrons transferred E is the cell voltage
- At standard state, △G° = -E°zF

• Cell voltage is an intensive property, does not vary with size of the ^{WS}SYStem or the number of electrons transferred 7

