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ABSTRACT. Alpha derivatives are studied on generalized time scales T. We present a Liouville
formula for an nth order linear vector alpha-dynamic equation on a generalized time scale. A criterion
is given for a matrix function to be α-regressive. As special cases, we get Liouville’s formula for the
delta dynamic system and for the nabla dynamic system, and other examples are presented.
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1. INTRODUCTION

In this paper, we will assume that the reader is familiar with the common litera-

ture on dynamic equations on time scales (see, for example, Bohner and Peterson [3]).

We first define generalized time scales and the α-derivative as in Ahlbrandt, Bohner,

and Ridenhour [1].

Definition 1.1. A generalized time scale (T, α) is a nonempty set T ⊆ R such

that every Cauchy sequence in T converges to a point in T, except possibly Cauchy

sequences which converge to a finite infimum or supremum of T, and α is a function

mapping T into T.

Definition 1.2. A function f : T −→ R is alpha differentiable at a point t ∈ T
provided there is a unique number f (α)(t), the alpha derivative of f at t, with the

property that for each ε > 0 there exists a neighborhood U of t such that

|fα(t)− f(s)− f (α)(t)(α(t)− s)| ≤ ε|α(t)− s|

for all s ∈ U , where fα = f ◦ α.

Note that if α(t) = t and t is isolated, then for any function f , we have f is not

α-differentiable at t, as discussed in Bohner and Peterson [3]. When α = σ and T is

closed, we have the Hilger delta derivative [4]. For α = ρ and a closed set T, we have

the Atıcı–Guseinov nabla derivative, which was introduced in Section 8.4 of Atıcı and

Guseinov [2].
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Definition 1.3. A scalar function p : T −→ R is α-regressive provided

1 + p(t)µα(t) 6= 0 for all t ∈ T,

where µα(t) := α(t)− t is the generalized graininess.

Definition 1.4. For two α-regressive functions p and q, we define circle-plus addition

via

(p⊕α q)(t) = p(t) + q(t) + µα(t)p(t)q(t).

Definition 1.5. A first order linear alpha dynamic equation is of the form

y(α) = p(t)y, where p is α-regressive.

Definition 1.6. If the initial value problem

y(α) = p(t)y, y(t0) = 1

has a unique solution, we call the unique solution the generalized exponential function

and denote it by ep(t, t0).

Note that this exponential function depends on both T and α. We now in-

troduce notation which is similar to notation used in Horn and Johnson [5]. Let

λk ⊆ {1, 2, . . . , n} be an indexed set with k elements. For an n × n matrix-valued

function A, a principal submatrix of A, denoted A(λk) is the submatrix that lies in

the rows and columns of A(t) indexed by λk. Note that A(λk) is k × k, and there

are
(
n
k

)
different k × k principal submatrices of A. The determinant of a principal

submatrix is called a principal minor of A(t). The sum of the
(
n
k

)
different k × k

principal minors of A(t) is denoted Ek(A(t)). We will usually suppress the t and just

write Ek(A). As shown in Horn and Johnson [5], the characteristic polynomial for

A(t),

pA(x) = det (xI − A)

can be written in the form

pA(x) = xn − xn−1E1(A) + xn−2E2(A) + . . .+ (−1)nEn(A).

Definition 1.7. We say A is α-regressive provided I + µα(t)A(t) is invertible for

t ∈ T.

For an n × n matrix-valued function X, X(λk, α) is the n × n matrix obtained

from X(t) with alpha derivatives on the rows indexed by λk and the usual entries

of X(t) on the remaining rows. Let X(λk, α, j) for k ≤ j ≤ n denote that j ∈ λk

and j is the largest number in λk. Note that there are
(
n
k

)
different X(λk, α) and(

j−1
k−1

)
different X(λk, α, j). Also, let Dk(X) denote the sum of the determinants of

the X(λk, α) and Dk,j(X) denote the sum of the determinants of the X(λk, α, j).
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2. MAIN RESULTS

Lemma 2.1. Let A be an n×n matrix-valued function. A is α-regressive if and only

if the scalar function q defined by

q(t) = E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A)

is α-regressive.

Proof. If µα(t) 6= 0, we have

det [I + µα(t)A(t)] = (−µα(t))n det [
−1

µα(t)
I − A(t)]

= (−µα(t))npA

(
−1

µα(t)

)
= (−µα(t))n

[(
−1

µα(t)

)n
−
(
−1

µα(t)

)n−1

E1(A) + . . .+ (−1)nEn(A)

]
= 1 + µα(t)

[
E1(A) + µα(t)E2(A) + µ2

α(t)E3(A) + . . .+ µn−1
α (t)En(A)

]
.

Thus,

det [I + µα(t)A(t)] = 1 + µα(t)q(t)

where

q(t) = E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A).

Note that this formula also holds for those t where µα(t) = 0. Hence,

det [I + µα(t)A(t)] 6= 0

if and only if

1 + µα(t)q(t) 6= 0.

Thus, A(t) is an α-regressive matrix if and only if q(t) is α-regressive where

q(t) = E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A).

The proof is complete.

Lemma 2.2. Assume A is an n × n matrix-valued function which is α-regressive

and X(t) is a solution of the n × n matrix α-dynamic equation X(α) = A(t)X in a

generalized time scale T. Then, for an indexed set λm ⊆ {1, 2, . . . , n}, we have

detX(λm, α) = detA(λm) detX(t).

Proof. Suppose λm = {i1, i2, i3, . . . , im}. Then, the (ik, j)-component of X(λm, α) is

x
(α)
ik,j

=
n∑
p=1

aikpxpj.
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The (i, j)-component of X(λm, α) where i 6∈ λm is xij. Since we can add −aikp times

the pth row of X(λm, α) for p 6∈ λm to the ithk row without changing the value of the

determinant, we have the

(ik, j)− component of X(λm, α) is
m∑
s=1

aikisxisj.

Do this for each ij row, 1 ≤ j ≤ m. Now, let C be the block diagonal matrix

C =

 Ii1−1 0 0

0 W 0

0 0 In−im


where Ij is the j × j identity matrix and

W =



ai1i1 0 . . . 0 ai1i2 0 . . . 0 . . . 0 . . . 0 ai1im
0

· · ·
0

Ii2−i1−1

0

· · ·
0

0

· · ·
0

ai2i1 0 . . . 0 ai2i2 0 . . . 0 . . . 0 . . . 0 ai2im
0

· · ·
0

0

· · ·
0

Ii3−i2−1

0

· · ·
0

...
...

. . .
...

0

· · ·
0

0

· · ·
0

Iim−im−1−1

0

· · ·
0

aimi1 0 . . . 0 aimi2 0 . . . 0 . . . 0 . . . 0 aimim



.

Then, we have

detX(λm, α) = detC detX(t) = detW detX(t).

We can calculate the determinant of W by expanding about the rows with 1’s along

the diagonal first. Thus, we see

detX(λm, α) =

∣∣∣∣∣∣∣∣∣∣
ai1i1 ai1i2 . . . ai1im
ai2i1 ai2i2 . . . ai2im

...
...

...
...

aimi1 aimi2 . . . aimim

∣∣∣∣∣∣∣∣∣∣
detX(t).

Therefore, detX(λm, α) = detA(λm) detX(t).

Theorem 2.3. Assume A is an n × n matrix-valued function which is α-regressive

and X(t) is a solution of the n × n matrix α-dynamic equation X(α) = A(t)X in
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a generalized time scale T. Then, u(t) := detX(t) satisfies the scalar α-dynamic

equation

u(α) = q(t)u

where

q(t) = E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A).

Proof. By Lemma 2.1, since A(t) is α-regressive, we have q(t) is α-regressive. Hence,

we can consider the first order linear alpha-dynamic equation

y(α) = q(t)y

with

q(t) = E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A).

Now, if ~x1, ~x2, . . . , ~xn are the row vectors of X(t), then we have

(detX(t))(α) =

∣∣∣∣∣∣∣∣∣∣∣∣

~x
(α)
1

~x2

~x3

. . .

~xn

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

~xα1
~x

(α)
2

~x3

. . .

~xn

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

~xα1
~xα2
~x

(α)
3

. . .

~xn

∣∣∣∣∣∣∣∣∣∣∣∣
+ . . .+

∣∣∣∣∣∣∣∣∣∣∣∣

~xα1
~xα2
. . .

~xαn−1

~x
(α)
n

∣∣∣∣∣∣∣∣∣∣∣∣
.

If Bj is the determinant of the matrix obtained from X(t) with ~xαi on the first j rows

and ~x
(α)
j+1 on the j + 1st row, then

(2.1) (detX(t))(α) = B0 +B1 + . . .+Bn−1.

Note that

Bj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~xα1
~xα2
. . .

~xαj
~x

(α)
j+1

. . .

~xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~x1 + µα(t)~x
(α)
1

~x2 + µα(t)~x
(α)
2

. . .

~xj + µα(t)~x
(α)
j

~x
(α)
j+1

. . .

~xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In calculating this determinant, we obtain the sum of determinants of all possible

combinations of ~xi and µα(t)~x
(α)
i for rows i = 1, 2, . . . , j. Thus,

(2.2) Bj = D1,j+1(X) + µα(t)D2,j+1(X) + µ2
α(t)D3,j+1(X) + . . .+ µjα(t)Dj+1,j+1(X).

Hence, by (2.1) and (2.2), we have

(2.3) (detX(t))(α) = D1(X) + µα(t)D2(X) + µ2
α(t)D3(X) + . . .+ µn−1

α (t)Dn(X).

Using Lemma 2.2 and summing the determinants of the
(
n
m

)
different X(λm, α) , we

have

Dm(X) = Em(A) detX(t) for m ∈ {1, 2, . . . , n}.
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Hence, by (2.3), we have

(detX(t))(α) = (E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A)) detX(t).

Thus for u(t) = detX(t), we have

u(α) = q(t)u

where

q(t) = E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A).

The proof is complete.

Corollary 2.4. Assume the initial value problem

(2.4) y(α) = q(t)y, y(t0) = 1

has a unique solution, where

q(t) = λ1 ⊕α λ2 ⊕α . . .⊕α λn

and {λi : 1 ≤ i ≤ n} are the eigenvalues of A(t). Suppose X(t) is a solution of the

matrix α-dynamic equation

X(α) = A(t)X

where A is α-regressive. Then, X satisfies Liouville’s formula.

detX(t) = eq(t, t0) detX(t0)

where

q(t) = λ1 ⊕α λ2 ⊕α . . .⊕α λn.

Proof. First, a simple induction argument shows that

λ1 ⊕α λ2 ⊕α . . .⊕α λn = S1(λ1, λ2, . . . , λn) + µα(t)S2(λ1, λ2, . . . , λn)

+ . . .+ µn−1
α (t)Sn(λ1, λ2, . . . , λn)

where Sk is the elementary symmetric function, as defined in Horn and Johnson [5].

Also, from [5], we have

Ek(A) = Sk(λ1, λ2, . . . , λn).

Hence,

E1(A) + µα(t)E2(A) + µ2
α(t)E3(A) + . . .+ µn−1

α (t)En(A)

= λ1 ⊕α λ2 ⊕α . . .⊕α λn,

and thus using the above theorem, Liouville’s formula holds.
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Remark 2.5. When µα(t) ≡ 0, then

λ1 ⊕α λ2 ⊕α . . .⊕α λn = λ1 + λ2 + . . .+ λn = tr(A(t)).

This formula agrees with Liouville’s formula for differential equations, which states if

X ′ = A(t)X, then

detX(t) = exp

{∫ t

t0

tr(A(τ))dτ

}
detX(t0).

Remark 2.6. If α = σ, T is a closed set, and f is rd-continuous and regressive,

then the IVP (4) has a unique solution. Also, if α = ρ, T is a closed set, and f is

ld-continuous and regressive, then the IVP (4) has a unique solution. There are many

other examples in which (4) has a unique solution.

Example 2.7. For a closed generalized time scale T with α(t) = σ(t), we have

µα(t) = µ(t) and the alpha derivative is the Hilger delta derivative [4]. Here, we

require I + µ(t)A(t) to be invertible and A(t) to be rd-continuous. Now, we see

E1(A) + µ(t)E2(A) + µ2(t)E3(A) + . . .+ µn−1(t)En(A)

is also rd-continuous and from Lemma 2.1 is regressive. Hence, for X(t), a solution

of

X∆ = A(t)X,

we have from Corollary 2.4 that

detX(t) = eq(t, t0) detX(t0)

where

q(t) = λ1 ⊕ λ2 ⊕ . . .⊕ λn.

Example 2.8. For a closed generalized time scale T with α(t) = ρ(t), we have

µα(t) = −ν(t) and the alpha derivative is the Atıcı–Guseinov nabla derivative [2].

Here, we require I − ν(t)A(t) to be invertible and A(t) to be ld-continuous. Hence,

we have

E1(A)− ν(t)E2(A) + ν2(t)E3(A) + . . .+ (−1)n−1νn−1(t)En(A)

is ld-continuous and from Lemma 2.1 is regressive. Thus, for X(t), as solution of

X∇ = A(t)X,

we have from Corollary 2.4 that

detX(t) = eq(t, t0) detX(t)

where

q(t) = λ1 ⊕ν λ2 ⊕ν . . .⊕ν λn.
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Example 2.9. Fix a point t0 ∈ T, where T is a generalized time scale. Let

D := {αn(t0)|n ∈ N0},

where

α0(t0) = t0 and αn = α ◦ α ◦ α ◦ . . . ◦ α, n times.

Assume that all points in D are isolated and α(t) 6= t for all t ∈ D. Then, for q, an

α-regressive scalar function, the IVP

y(α) = q(t)y, y(t0) = 1

can be written
yα(t)− y(t)

µα(t)
= q(t)y(t), y(t0) = 1.

Hence,

yα(t) = (1 + q(t)µα(t))y(t), for t ∈ D.

Iterating, the above expression with y(t0) = 1, we have

eq(α
n(t0), t0) =

n−1∏
s=0

[1 + q(αs(t0))µα(αs(t0))].

Note the this exponential is only defined on D. Thus, for X(t), a solution of

X(α) = A(t)X,

where A(t) is an α-regressive matrix-valued function, we have

detX(αn(t0)) =
n−1∏
s=0

[1 + q(αs(t0))µα(αs(t0))] detX(t0) for n ∈ N ∪ {0},

where

q(t) = λ1 ⊕α λ2 ⊕α . . .⊕α λn.
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