LIOUVILLE'S FORMULA ON TIME SCALES

VALERIE CORMANI

University of Nebraska–Lincoln, Department of Mathematics and Statistics, Lincoln, NE 68588–0323, USA. *E-mail:* vcormani@math.uga.edu

ABSTRACT. Alpha derivatives are studied on generalized time scales \mathbb{T} . We present a Liouville formula for an *n*th order linear vector alpha-dynamic equation on a generalized time scale. A criterion is given for a matrix function to be α -regressive. As special cases, we get Liouville's formula for the delta dynamic system and for the nabla dynamic system, and other examples are presented.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

In this paper, we will assume that the reader is familiar with the common literature on dynamic equations on time scales (see, for example, Bohner and Peterson [3]). We first define generalized time scales and the α -derivative as in Ahlbrandt, Bohner, and Ridenhour [1].

Definition 1.1. A generalized time scale (\mathbb{T}, α) is a nonempty set $\mathbb{T} \subseteq \mathbb{R}$ such that every Cauchy sequence in \mathbb{T} converges to a point in \mathbb{T} , except possibly Cauchy sequences which converge to a finite infimum or supremum of \mathbb{T} , and α is a function mapping \mathbb{T} into \mathbb{T} .

Definition 1.2. A function $f : \mathbb{T} \longrightarrow \mathbb{R}$ is alpha differentiable at a point $t \in \mathbb{T}$ provided there is a unique number $f^{(\alpha)}(t)$, the alpha derivative of f at t, with the property that for each $\epsilon > 0$ there exists a neighborhood \mathcal{U} of t such that

$$|f^{\alpha}(t) - f(s) - f^{(\alpha)}(t)(\alpha(t) - s)| \le \epsilon |\alpha(t) - s|$$

for all $s \in \mathcal{U}$, where $f^{\alpha} = f \circ \alpha$.

Note that if $\alpha(t) = t$ and t is isolated, then for any function f, we have f is not α -differentiable at t, as discussed in Bohner and Peterson [3]. When $\alpha = \sigma$ and T is closed, we have the Hilger delta derivative [4]. For $\alpha = \rho$ and a closed set T, we have the Atici–Guseinov nabla derivative, which was introduced in Section 8.4 of Atici and Guseinov [2].

Received August 21, 2002

1056-2176 \$03.50 ©Dynamic Publishers, Inc.

Definition 1.3. A scalar function $p : \mathbb{T} \longrightarrow \mathbb{R}$ is α -regressive provided

$$1 + p(t)\mu_{\alpha}(t) \neq 0$$
 for all $t \in \mathbb{T}$,

where $\mu_{\alpha}(t) := \alpha(t) - t$ is the generalized graininess.

Definition 1.4. For two α -regressive functions p and q, we define circle-plus addition via

$$(p \oplus_{\alpha} q)(t) = p(t) + q(t) + \mu_{\alpha}(t)p(t)q(t)$$

Definition 1.5. A first order linear alpha dynamic equation is of the form

 $y^{(\alpha)} = p(t)y$, where p is α -regressive.

Definition 1.6. If the initial value problem

$$y^{(\alpha)} = p(t)y, \quad y(t_0) = 1$$

has a unique solution, we call the unique solution the generalized exponential function and denote it by $e_p(t, t_0)$.

Note that this exponential function depends on both \mathbb{T} and α . We now introduce notation which is similar to notation used in Horn and Johnson [5]. Let $\lambda_k \subseteq \{1, 2, \ldots, n\}$ be an indexed set with k elements. For an $n \times n$ matrix-valued function A, a principal submatrix of A, denoted $A(\lambda_k)$ is the submatrix that lies in the rows and columns of A(t) indexed by λ_k . Note that $A(\lambda_k)$ is $k \times k$, and there are $\binom{n}{k}$ different $k \times k$ principal submatrices of A. The determinant of a principal submatrix is called a principal minor of A(t). The sum of the $\binom{n}{k}$ different $k \times k$ principal minors of A(t) is denoted $E_k(A(t))$. We will usually suppress the t and just write $E_k(A)$. As shown in Horn and Johnson [5], the characteristic polynomial for A(t),

$$p_A(x) = \det\left(xI - A\right)$$

can be written in the form

$$p_A(x) = x^n - x^{n-1}E_1(A) + x^{n-2}E_2(A) + \ldots + (-1)^n E_n(A)$$

Definition 1.7. We say A is α -regressive provided $I + \mu_{\alpha}(t)A(t)$ is invertible for $t \in \mathbb{T}$.

For an $n \times n$ matrix-valued function X, $X(\lambda_k, \alpha)$ is the $n \times n$ matrix obtained from X(t) with alpha derivatives on the rows indexed by λ_k and the usual entries of X(t) on the remaining rows. Let $X(\lambda_k, \alpha, j)$ for $k \leq j \leq n$ denote that $j \in \lambda_k$ and j is the largest number in λ_k . Note that there are $\binom{n}{k}$ different $X(\lambda_k, \alpha)$ and $\binom{j-1}{k-1}$ different $X(\lambda_k, \alpha, j)$. Also, let $D_k(X)$ denote the sum of the determinants of the $X(\lambda_k, \alpha)$ and $D_{k,j}(X)$ denote the sum of the determinants of the $X(\lambda_k, \alpha, j)$.

2. MAIN RESULTS

Lemma 2.1. Let A be an $n \times n$ matrix-valued function. A is α -regressive if and only if the scalar function q defined by

$$q(t) = E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A)$$

is α -regressive.

Proof. If $\mu_{\alpha}(t) \neq 0$, we have

$$\det \left[I + \mu_{\alpha}(t)A(t)\right] = (-\mu_{\alpha}(t))^{n} \det \left[\frac{-1}{\mu_{\alpha}(t)}I - A(t)\right]$$

= $(-\mu_{\alpha}(t))^{n}p_{A}\left(\frac{-1}{\mu_{\alpha}(t)}\right)$
= $(-\mu_{\alpha}(t))^{n}\left[\left(\frac{-1}{\mu_{\alpha}(t)}\right)^{n} - \left(\frac{-1}{\mu_{\alpha}(t)}\right)^{n-1}E_{1}(A) + \dots + (-1)^{n}E_{n}(A)\right]$
= $1 + \mu_{\alpha}(t)\left[E_{1}(A) + \mu_{\alpha}(t)E_{2}(A) + \mu_{\alpha}^{2}(t)E_{3}(A) + \dots + \mu_{\alpha}^{n-1}(t)E_{n}(A)\right].$

Thus,

$$\det \left[I + \mu_{\alpha}(t)A(t)\right] = 1 + \mu_{\alpha}(t)q(t)$$

where

$$q(t) = E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A).$$

Note that this formula also holds for those t where $\mu_{\alpha}(t) = 0$. Hence,

$$\det\left[I + \mu_{\alpha}(t)A(t)\right] \neq 0$$

if and only if

$$1 + \mu_{\alpha}(t)q(t) \neq 0.$$

Thus, A(t) is an α -regressive matrix if and only if q(t) is α -regressive where

$$q(t) = E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A).$$

The proof is complete.

Lemma 2.2. Assume A is an $n \times n$ matrix-valued function which is α -regressive and X(t) is a solution of the $n \times n$ matrix α -dynamic equation $X^{(\alpha)} = A(t)X$ in a generalized time scale \mathbb{T} . Then, for an indexed set $\lambda_m \subseteq \{1, 2, \ldots, n\}$, we have

$$\det X(\lambda_m, \alpha) = \det A(\lambda_m) \det X(t)$$

Proof. Suppose $\lambda_m = \{i_1, i_2, i_3, \dots, i_m\}$. Then, the (i_k, j) -component of $X(\lambda_m, \alpha)$ is

$$x_{i_k,j}^{(\alpha)} = \sum_{p=1}^n a_{i_k p} x_{pj}.$$

The (i, j)-component of $X(\lambda_m, \alpha)$ where $i \notin \lambda_m$ is x_{ij} . Since we can add $-a_{i_k p}$ times the p^{th} row of $X(\lambda_m, \alpha)$ for $p \notin \lambda_m$ to the i_k^{th} row without changing the value of the determinant, we have the

$$(i_k, j)$$
 – component of $X(\lambda_m, \alpha)$ is $\sum_{s=1}^m a_{i_k i_s} x_{i_s j}$.

Do this for each i_j row, $1 \le j \le m$. Now, let C be the block diagonal matrix

$$C = \left(\begin{array}{ccc} \mathbf{I}_{i_{1}-1} & 0 & 0\\ 0 & \mathbf{W} & 0\\ 0 & 0 & \mathbf{I}_{n-i_{m}} \end{array}\right)$$

where I_j is the $j \times j$ identity matrix and

$$W = \begin{pmatrix} a_{i_1i_1} & 0 \dots 0 & a_{i_1i_2} & 0 \dots 0 & \dots & 0 \dots 0 & a_{i_1i_m} \\ 0 & 0 & & & & 0 \\ \dots & I_{i_2-i_1-1} & \dots & & & \dots \\ 0 & 0 & & & & 0 \\ a_{i_2i_1} & 0 \dots 0 & a_{i_2i_2} & 0 \dots 0 & \dots & 0 \dots 0 & a_{i_2i_m} \\ 0 & 0 & & & & 0 \\ \dots & \dots & I_{i_3-i_2-1} & & \dots \\ 0 & 0 & & & & 0 \\ \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & & & & 0 \\ \vdots & \vdots & \ddots & & & \vdots \\ 0 & 0 & & & & 0 \\ \dots & \dots & \dots & I_{i_m-i_{m-1}-1} & \dots \\ 0 & 0 & & & & 0 \\ a_{i_mi_1} & 0 \dots 0 & a_{i_mi_2} & 0 \dots 0 & \dots & 0 \dots 0 & a_{i_mi_m} \end{pmatrix}$$

Then, we have

$$\det X(\lambda_m, \alpha) = \det C \det X(t) = \det W \det X(t).$$

We can calculate the determinant of W by expanding about the rows with 1's along the diagonal first. Thus, we see

$$\det X(\lambda_m, \alpha) = \begin{vmatrix} a_{i_1i_1} & a_{i_1i_2} & \dots & a_{i_1i_m} \\ a_{i_2i_1} & a_{i_2i_2} & \dots & a_{i_2i_m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i_mi_1} & a_{i_mi_2} & \dots & a_{i_mi_m} \end{vmatrix} \det X(t).$$

Therefore, $\det X(\lambda_m, \alpha) = \det A(\lambda_m) \det X(t)$.

Theorem 2.3. Assume A is an $n \times n$ matrix-valued function which is α -regressive and X(t) is a solution of the $n \times n$ matrix α -dynamic equation $X^{(\alpha)} = A(t)X$ in

a generalized time scale \mathbb{T} . Then, $u(t) := \det X(t)$ satisfies the scalar α -dynamic equation

$$u^{(\alpha)} = q(t)u$$

where

$$q(t) = E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A).$$

Proof. By Lemma 2.1, since A(t) is α -regressive, we have q(t) is α -regressive. Hence, we can consider the first order linear alpha-dynamic equation

$$y^{(\alpha)} = q(t)y$$

with

$$q(t) = E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A).$$

Now, if $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ are the row vectors of X(t), then we have

$$(\det X(t))^{(\alpha)} = \begin{vmatrix} \vec{x}_1^{(\alpha)} \\ \vec{x}_2 \\ \vec{x}_3 \\ \cdots \\ \vec{x}_n \end{vmatrix} + \begin{vmatrix} \vec{x}_1^{\alpha} \\ \vec{x}_2^{(\alpha)} \\ \vec{x}_2^{\alpha} \\ \vec{x}_3^{\alpha} \end{vmatrix} + \begin{vmatrix} \vec{x}_1^{\alpha} \\ \vec{x}_2^{\alpha} \\ \vec{x}_2^{\alpha} \\ \vec{x}_2^{\alpha} \\ \vec{x}_1^{\alpha} \\ \vec{x}_2^{\alpha} \\ \cdots \\ \vec{x}_n \end{vmatrix} + \cdots + \begin{vmatrix} \vec{x}_1^{\alpha} \\ \vec{x}_2^{\alpha} \\ \vec{x}_2^{\alpha} \\ \cdots \\ \vec{x}_n^{\alpha} \end{vmatrix} + \cdots + \begin{vmatrix} \vec{x}_1^{\alpha} \\ \vec{x}_2^{\alpha} \\ \vec{x}_2^{\alpha} \\ \vec{x}_2^{\alpha} \\ \cdots \\ \vec{x}_n^{\alpha} \end{vmatrix}$$

If B_j is the determinant of the matrix obtained from X(t) with \vec{x}_i^{α} on the first j rows and $\vec{x}_{j+1}^{(\alpha)}$ on the $j + 1^{st}$ row, then

(2.1)
$$(\det X(t))^{(\alpha)} = B_0 + B_1 + \ldots + B_{n-1}$$

Note that

$$B_{j} = \begin{vmatrix} \vec{x}_{1}^{\alpha} \\ \vec{x}_{2}^{\alpha} \\ \dots \\ \vec{x}_{j}^{\alpha} \\ \vec{x}_{j+1}^{\alpha} \end{vmatrix} = \begin{vmatrix} \vec{x}_{1} + \mu_{\alpha}(t)\vec{x}_{1}^{(\alpha)} \\ \vec{x}_{2} + \mu_{\alpha}(t)\vec{x}_{2}^{(\alpha)} \\ \dots \\ \vec{x}_{j} + \mu_{\alpha}(t)\vec{x}_{j}^{(\alpha)} \\ \vec{x}_{j+1}^{(\alpha)} \\ \dots \\ \vec{x}_{n} \end{vmatrix} = \begin{vmatrix} \vec{x}_{1} + \mu_{\alpha}(t)\vec{x}_{1}^{(\alpha)} \\ \vec{x}_{1} \\ \vec{x}_{2} \\ \vec{x}_{2} \\ \vec{x}_{1} \\ \vec{x}_{2} \\ \vec{x}_{1} \\ \vec{x}_{2} \\ \vec{x}_{2} \\ \vec{x}_{1} \\ \vec{x}_{2} \\ \vec{x}_{1} \\ \vec{x}_{1} \\ \vec{x}_{2} \\ \vec{x}_{1} \\ \vec{x}_{1} \\ \vec{x}_{2} \\ \vec{x}_{1} \\ \vec{x}_{1$$

In calculating this determinant, we obtain the sum of determinants of all possible combinations of \vec{x}_i and $\mu_{\alpha}(t)\vec{x}_i^{(\alpha)}$ for rows i = 1, 2, ..., j. Thus,

(2.2)
$$B_j = D_{1,j+1}(X) + \mu_\alpha(t)D_{2,j+1}(X) + \mu_\alpha^2(t)D_{3,j+1}(X) + \ldots + \mu_\alpha^j(t)D_{j+1,j+1}(X).$$

Hence, by (2.1) and (2.2), we have

(2.3)
$$(\det X(t))^{(\alpha)} = D_1(X) + \mu_\alpha(t)D_2(X) + \mu_\alpha^2(t)D_3(X) + \ldots + \mu_\alpha^{n-1}(t)D_n(X).$$

Using Lemma 2.2 and summing the determinants of the $\binom{n}{m}$ different $X(\lambda_m, \alpha)$, we have

$$D_m(X) = E_m(A) \det X(t) \text{ for } m \in \{1, 2, \dots, n\}.$$

Hence, by (2.3), we have

$$(\det X(t))^{(\alpha)} = (E_1(A) + \mu_\alpha(t)E_2(A) + \mu_\alpha^2(t)E_3(A) + \dots + \mu_\alpha^{n-1}(t)E_n(A)) \det X(t).$$

Thus for $u(t) = \det X(t)$, we have

$$u^{(\alpha)} = q(t)u$$

where

$$q(t) = E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A).$$

The proof is complete.

Corollary 2.4. Assume the initial value problem

(2.4)
$$y^{(\alpha)} = q(t)y, \quad y(t_0) = 1$$

has a unique solution, where

$$q(t) = \lambda_1 \oplus_\alpha \lambda_2 \oplus_\alpha \ldots \oplus_\alpha \lambda_n$$

and $\{\lambda_i : 1 \leq i \leq n\}$ are the eigenvalues of A(t). Suppose X(t) is a solution of the matrix α -dynamic equation

$$X^{(\alpha)} = A(t)X$$

where A is α -regressive. Then, X satisfies Liouville's formula.

$$\det X(t) = e_q(t, t_0) \det X(t_0)$$

where

$$q(t) = \lambda_1 \oplus_\alpha \lambda_2 \oplus_\alpha \ldots \oplus_\alpha \lambda_n.$$

Proof. First, a simple induction argument shows that

$$\lambda_1 \oplus_\alpha \lambda_2 \oplus_\alpha \dots \oplus_\alpha \lambda_n = S_1(\lambda_1, \lambda_2, \dots, \lambda_n) + \mu_\alpha(t) S_2(\lambda_1, \lambda_2, \dots, \lambda_n)$$
$$+ \dots + \mu_\alpha^{n-1}(t) S_n(\lambda_1, \lambda_2, \dots, \lambda_n)$$

where S_k is the elementary symmetric function, as defined in Horn and Johnson [5]. Also, from [5], we have

$$E_k(A) = S_k(\lambda_1, \lambda_2, \dots, \lambda_n).$$

Hence,

$$E_1(A) + \mu_{\alpha}(t)E_2(A) + \mu_{\alpha}^2(t)E_3(A) + \ldots + \mu_{\alpha}^{n-1}(t)E_n(A)$$
$$= \lambda_1 \oplus_{\alpha} \lambda_2 \oplus_{\alpha} \ldots \oplus_{\alpha} \lambda_n,$$

and thus using the above theorem, Liouville's formula holds.

Remark 2.5. When $\mu_{\alpha}(t) \equiv 0$, then

$$\lambda_1 \oplus_{\alpha} \lambda_2 \oplus_{\alpha} \ldots \oplus_{\alpha} \lambda_n = \lambda_1 + \lambda_2 + \ldots + \lambda_n = \operatorname{tr}(A(t)).$$

This formula agrees with Liouville's formula for differential equations, which states if X' = A(t)X, then

$$\det X(t) = \exp\left\{\int_{t_0}^t \operatorname{tr}(A(\tau))d\tau\right\} \det X(t_0).$$

Remark 2.6. If $\alpha = \sigma$, \mathbb{T} is a closed set, and f is rd-continuous and regressive, then the IVP (4) has a unique solution. Also, if $\alpha = \rho$, \mathbb{T} is a closed set, and f is ld-continuous and regressive, then the IVP (4) has a unique solution. There are many other examples in which (4) has a unique solution.

Example 2.7. For a closed generalized time scale \mathbb{T} with $\alpha(t) = \sigma(t)$, we have $\mu_{\alpha}(t) = \mu(t)$ and the alpha derivative is the Hilger delta derivative [4]. Here, we require $I + \mu(t)A(t)$ to be invertible and A(t) to be rd-continuous. Now, we see

$$E_1(A) + \mu(t)E_2(A) + \mu^2(t)E_3(A) + \ldots + \mu^{n-1}(t)E_n(A)$$

is also rd-continuous and from Lemma 2.1 is regressive. Hence, for X(t), a solution of

$$X^{\Delta} = A(t)X,$$

we have from Corollary 2.4 that

$$\det X(t) = e_q(t, t_0) \det X(t_0)$$

where

$$q(t) = \lambda_1 \oplus \lambda_2 \oplus \ldots \oplus \lambda_n.$$

Example 2.8. For a closed generalized time scale \mathbb{T} with $\alpha(t) = \rho(t)$, we have $\mu_{\alpha}(t) = -\nu(t)$ and the alpha derivative is the Atici–Guseinov nabla derivative [2]. Here, we require $I - \nu(t)A(t)$ to be invertible and A(t) to be ld-continuous. Hence, we have

$$E_1(A) - \nu(t)E_2(A) + \nu^2(t)E_3(A) + \ldots + (-1)^{n-1}\nu^{n-1}(t)E_n(A)$$

is ld-continuous and from Lemma 2.1 is regressive. Thus, for X(t), as solution of

$$X^{\nabla} = A(t)X,$$

we have from Corollary 2.4 that

$$\det X(t) = e_q(t, t_0) \det X(t)$$

where

$$q(t) = \lambda_1 \oplus_{\nu} \lambda_2 \oplus_{\nu} \ldots \oplus_{\nu} \lambda_n.$$

Example 2.9. Fix a point $t_0 \in \mathbb{T}$, where \mathbb{T} is a generalized time scale. Let

$$D := \{ \alpha^n(t_0) | n \in \mathbb{N}_0 \},\$$

where

$$\alpha^0(t_0) = t_0$$
 and $\alpha^n = \alpha \circ \alpha \circ \alpha \circ \ldots \circ \alpha$, n times

Assume that all points in D are isolated and $\alpha(t) \neq t$ for all $t \in D$. Then, for q, an α -regressive scalar function, the IVP

$$y^{(\alpha)} = q(t)y, \quad y(t_0) = 1$$

can be written

$$\frac{y^{\alpha}(t) - y(t)}{\mu_{\alpha}(t)} = q(t)y(t), \quad y(t_0) = 1.$$

Hence,

$$y^{\alpha}(t) = (1 + q(t)\mu_{\alpha}(t))y(t), \text{ for } t \in D.$$

Iterating, the above expression with $y(t_0) = 1$, we have

$$e_q(\alpha^n(t_0), t_0) = \prod_{s=0}^{n-1} [1 + q(\alpha^s(t_0))\mu_\alpha(\alpha^s(t_0))].$$

Note the this exponential is only defined on D. Thus, for X(t), a solution of

$$X^{(\alpha)} = A(t)X,$$

where A(t) is an α -regressive matrix-valued function, we have

$$\det X(\alpha^n(t_0)) = \prod_{s=0}^{n-1} [1 + q(\alpha^s(t_0))\mu_\alpha(\alpha^s(t_0))] \det X(t_0) \quad \text{for } n \in \mathbb{N} \cup \{0\},$$

where

$$q(t) = \lambda_1 \oplus_\alpha \lambda_2 \oplus_\alpha \ldots \oplus_\alpha \lambda_n$$

REFERENCES

- C. Ahlbrandt, M. Bohner, and J. Ridenhour, Hamiltonian systems on time scales. J. Math. Anal. Appl., 250: 561–578 (2000).
- [2] F. M. Atıcı and G. Sh. Guseinov, On Green's functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math., 141(1-2): 75–99 (2002). Special Issue on "Dynamic Equations on Time Scales", edited by R. P. Agarwal, M. Bohner, and D. O'Regan.
- [3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston, 2001.
- [4] S. Hilger, Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, 1988.
- [5] R. Horn and C. Johnson, *Matrix Analysis*. Cambridge University Press, New York, 1993.